
Developing Process Scheduling Policies in
User Space with Common OS Features

Kenichi Yasukata
IIJ Research Laboratory

APSys 2024 ‒ Kyoto, Japan ‒ 4th September

Kenta Ishiguro
Keio University



Process Scheduling
• Process scheduling is one of the keys to multiprogramming 

where a CPU core runs multiple programs concurrently

2



Process Scheduling
• Process scheduling is one of the keys to multiprogramming 

where a CPU core runs multiple programs concurrently

3

Time



Process Scheduling
• Process scheduling is one of the keys to multiprogramming 

where a CPU core runs multiple programs concurrently

4

Time
A B C



Process Scheduling
• Process scheduling is one of the keys to multiprogramming 

where a CPU core runs multiple programs concurrently
• Executed processes are switched at some point

A B C
Time

5



Process Scheduling
• Process scheduling is one of the keys to multiprogramming 

where a CPU core runs multiple programs concurrently
• Executed processes are switched at some point
• A process scheduler makes a scheduling decision
• It decides the process to be executed next
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Problem
• Despite their benefits, it is hard to develop and deploy 
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Related Work (1/4)
• Despite their benefits, it is hard to develop and deploy 

custom process scheduling policies
Scheduling enhancement by specific kernel/hypervisor extensions

It is hard for users to deploy them
because of concerns for security,
stability, and future maintenance

e.g., vTurbo (ATCʼ13),
Tableau (EuroSysʼ18),
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Related Work (2/4)
• Despite their benefits, it is hard to develop and deploy 
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Related Work (2/4)
• Despite their benefits, it is hard to develop and deploy 

custom process scheduling policies
Scheduling enhancement by specific user-space runtimes

It is hard to employ them because
applications need to directly involve
the specific user-space runtimes

e.g., Arachne (OSDIʼ18),
Shenango (NSDIʼ19),
Concord (SOSPʼ23)
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This Work
• We present a mechanism called the priority elevation trick

• enables flexible scheduling policy development in user space
• by only using common OS features
• without necessarily relying on a specific user-space runtime

The priority elevation trick
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compared to the other processes (A and B)

∞
Scheduler

Us
er

Sp
ac

e
Ke

rn
el

Sp
ac

e

A B C Time
C

C will be mostly always executed, and
A and B are mostly never executed

1 1

We can indirectly control the kernel-space process scheduler
by making sufficiently vast priority gaps among processes;

we can do this by the kernel-provided priority-setting facility
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• sched_setscheduler system call: priority setting
• argument 1: process ID (pid) of a process
• argument 2: scheduling policy
• argument 3: parameter (e.g., priority value)

• sched_setaffinity system call: CPU core affinity setting
• argument 1: process ID (pid) of a process
• argument 2 and 3: CPU core affinity specification

The priority elevation trick can be applied for scheduling entities
having pids (i.e., processes, pthreads, vCPUs backed by QEMU)
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• sched_setscheduler system call: priority setting
• argument 1: process ID (pid) of a process
• argument 2: scheduling policy
• argument 3: parameter (e.g., priority value)

• sched_setaffinity system call: CPU core affinity setting
• argument 1: process ID (pid) of a process
• argument 2 and 3: CPU core affinity specification

We use the SCHED_FIFO policy of the Linux scheduler and
its prioritization scheme to configure extreme priority gaps
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The priority elevation trick leverages this behavior to
indirectly control the kernel-space process scheduler
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A B C : normal process

52



Process Types Considered in the Trick
• A normal process is normal and does not perform scheduling
• A scheduler process schedules normal processes
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: normal process
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Three Priority Values
• High is assigned to a scheduler process
• Middle and Low are for normal processes
• Middle: a normal process allowed to run
• Low: a normal process not allowed to run
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Initial Priority Setting
• High is assigned to a scheduler process
• Middle and Low are for normal processes
• Middle: a normal process allowed to run
• Low: a normal process not allowed to run
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Initial Priority Setting
• The kernel maintains a list of sleeping

processes that are not considered
candidates for the scheduling
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The dedicated pattern runs
scheduler and normal processes

on different CPU cores
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Priority Elevation
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Despite this limitation,
the priority elevation trick has use cases



Evaluation
• How much are the overheads?
• Delay
• CPU overhead

• What are the use cases?
• Microsecond-scale time slicing
• Table-driven scheduling
• Preemptive scheduling
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switch two processes
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Use Case: Microsecond-scale Time Slicing
• Previous work showed microsecond-scale time slicing 

contributes to application performance
• vTurbo (USENIX ATCʼ13), micro-sliced cores (EuroSysʼ18)

• However, the minimum configurable time slice on Linux is
1 millisecond (ensured by the kernel build system)

• The priority elevation trick allows us to apply microsecond-
scale time slices on unmodified Linux

Here, we see how it affects networked server performance
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• The client machine runs wrk2 to send requests
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Use Case: Table-driven Scheduling
• Previous work showed that table-driven scheduling adopting 

static scheduling table improves application performance
• Tableau (EuroSysʼ18)

• However, Linux does not provide a configuration interface 
allowing users to install static scheduling tables

• The priority elevation trick allows us to realize table-driven 
scheduling without changing the kernel

We see how it contributes to networked server performance
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Use Case: Table-driven Scheduling
• Scenario: A, B, and C run on the same CPU core
• A runs the networked server, and B and C run a busy loop
• We assign 50% of CPU time to A and 25% to B and C each

50% 25% 25%
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Use Case: Table-driven Scheduling
• Two ordering patterns: A-A-B-C and A-B-A-C

The kernel-space process scheduler does not offer
an interface to specify the order of the scheduling

A B CA
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Use Case: Table-driven Scheduling
• Two ordering patterns: A-A-B-C and A-B-A-C

The priority elevation trick allows us to implement
scheduling tables to ensure these ordering patterns
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• Shinjuku (NSDIʼ19)
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Use Case: Preemptive Scheduling
• Previous work proposed to adopt preemptive scheduling to 

mitigate the head-of-line blocking issue
• Shinjuku (NSDIʼ19)

• The original Shinjuku system is built as a specialized OS

• The priority elevation trick allows us to implement 
preemptive scheduling without changing the kernel
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Use Case: Preemptive Scheduling

App
Request 0.5 us

This request requires 0.5 us to generate a response
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App
Request 500 us0.5 us

This request requires 500 us to generate a response
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App
Request 500 us0.5 us 0.5 us

This request requires 0.5 us to generate a response
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The request is processed in 500 us
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Request
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The request is processed in 0.5 us

500 us 0.5 us
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Use Case: Preemptive Scheduling
The head-of-line blocking issue

App
Request

0.5 us 500 us 0.5 us
This request had to wait for

500.5 us until it gets processed

The Shinjuku (NSDIʼ19) work proposes to adopt
preemptive scheduling to mitigate head-of-line blocking
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Preemptive scheduling

App
Request 500 us0.5 us 0.5 us
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Preemptive scheduling

App
Request 0.5 us

The request is processed in 0.5 us

0.5 us

500 us
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Preemptive scheduling

App
Request 0.5 us

The next request is now processed ...

0.5 us
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Preemptive scheduling

App
Request 0.5 us

The request processing has not been finished
within a preconfigured threshold

0.5 us threshold

217



Use Case: Preemptive Scheduling
Preemptive scheduling

App
Request 0.5 us

The preemptive scheduling policy preempts the currently running worker
and runs another worker to process the subsequent request

0.5 us threshold
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Preemptive scheduling
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Request

The request is processed in 0.5 us

0.5 us threshold 0.5 us
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Preemptive scheduling
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Then, the preempted worker is resumed

0.5 us threshold 0.5 us
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Preemptive scheduling

App
Request

Then, the preempted worker is resumed

0.5 us threshold 0.5 us

This request had to wait for
0.5 us + threshold
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Preemptive scheduling

App
Request

Then, the preempted worker is resumed

0.5 us threshold 0.5 us

This request had to wait for
0.5 us + threshold

Head-of-line blocking
is mitigated
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Use Case: Preemptive Scheduling
Preemptive scheduling

App
Request

Then, the preempted worker is resumed

0.5 us threshold 0.5 us

This request had to wait for
0.5 us + threshold

Head-of-line blocking
is mitigated

We implement an equivalent mechanism with the priority elevation trick
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Use Case: Preemptive Scheduling
• Pthread types
• A worker pthreads handle application-level requests
• A dispatcher pthread

• extracts application-level requests by performing TCP/IP processing for 
incoming packets

• dispatches the requests to worker pthreads

A B C : worker

D : dispatcher
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Use Case: Preemptive Scheduling
• Pthread types
• A worker pthreads handle application-level requests
• A dispatcher pthread

• extracts application-level requests by performing TCP/IP processing for 
incoming packets

• dispatches the requests to worker pthreads
• A switcher pthread preempts a worker pthread that continuously 

runs longer than a preconfigured threshold

A B C : worker

D : dispatcherS : switcher
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Use Case: Preemptive Scheduling
• Priority values
• 4:
• 3:
• 2:
• 1:
(a higher value represents a higher priority)

A B C : worker

D : dispatcherS : switcher
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Sleep
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Use Case: Preemptive Scheduling
• Priority values
• 4: the switcher
• 3:
• 2:
• 1:
(a higher value represents a higher priority)
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Use Case: Preemptive Scheduling
• Priority values
• 4: the switcher
• 3: a worker allowed by the dispatcher to run
• 2:
• 1:
(a higher value represents a higher priority)

A B C : worker

D : dispatcherS : switcher
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Use Case: Preemptive Scheduling
• Priority values
• 4: the switcher
• 3: a worker allowed by the dispatcher to run
• 2: the dispatcher
• 1:
(a higher value represents a higher priority)

A B C : worker

D : dispatcherS : switcher
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Use Case: Preemptive Scheduling
• Priority values
• 4: the switcher
• 3: a worker allowed by the dispatcher to run
• 2: the dispatcher
• 1: workers that are not allowed to run
(a higher value represents a higher priority)

A B C : worker

D : dispatcherS : switcher

4

3
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Sleep

D

A B C

S
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Time
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The kernel-space process scheduler
picks up the highest priority process
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Enter the sleep state by calling
read(timerfd)
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RunD handles incoming packets and
dispatch requests to a worker
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Run A for application-level
request handling
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Use Case: Preemptive Scheduling
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The timer expires
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Use Case: Preemptive Scheduling
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Use Case: Preemptive Scheduling
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Use Case: Preemptive Scheduling
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The switcher pthread wakes up

The kernel-space process scheduler
picks up the highest priority process
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Use Case: Preemptive Scheduling
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Use Case: Preemptive Scheduling
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S has been resumed to run
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Use Case: Preemptive Scheduling
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Use Case: Preemptive Scheduling

Time
S

4

3

2

1

Sleep
S

A B C

: switcher

: worker

D : dispatcher

DPr
io

rit
yD SA

B C

S Run

Lower Aʼs priority to 1

A

258

In-kernel run queue



Use Case: Preemptive Scheduling
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Use Case: Preemptive Scheduling
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Use Case: Preemptive Scheduling
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The kernel-space process scheduler
picks up the highest priority process
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Use Case: Preemptive Scheduling
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Use Case: Preemptive Scheduling
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Use Case: Preemptive Scheduling
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Scheduling decision:

Run B for application-level
request handling
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Use Case: Preemptive Scheduling
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Use Case: Preemptive Scheduling
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Use Case: Preemptive Scheduling
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The kernel-space process scheduler
picks up the highest priority process
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Use Case: Preemptive Scheduling
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268

In-kernel run queue



Use Case: Preemptive Scheduling

Time
S

4

3

2

1

Sleep
S

A B C

: switcher

: worker

D : dispatcher

DPr
io

rit
yD S

S

D BA

C A

B Run

B has been resumed to run
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Use Case: Preemptive Scheduling
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Use Case: Preemptive Scheduling
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Use Case: Preemptive Scheduling
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Use Case: Preemptive Scheduling
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Use Case: Preemptive Scheduling
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Use Case: Preemptive Scheduling
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Use Case: Preemptive Scheduling
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The kernel-space process scheduler
picks up the highest priority process
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Use Case: Preemptive Scheduling
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Use Case: Preemptive Scheduling
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D has been resumed to run
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Use Case: Preemptive Scheduling
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Resume A for handling

the pending request
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Use Case: Preemptive Scheduling
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Use Case: Preemptive Scheduling
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Use Case: Preemptive Scheduling
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Use Case: Preemptive Scheduling
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The kernel-space process scheduler
picks up the highest priority process
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Use Case: Preemptive Scheduling
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Use Case: Preemptive Scheduling
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Use Case: Preemptive Scheduling
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Resume the suspended
application-level request handling
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Use Case: Preemptive Scheduling
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Use Case: Preemptive Scheduling
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Use Case: Preemptive Scheduling
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Use Case: Preemptive Scheduling
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Use Case: Preemptive Scheduling

Time
S

4

3

2

1

Sleep
S

A B C

: switcher

: worker

D : dispatcher

DPr
io

rit
yD S

S

D BA D A

C B A

Run

The kernel-space process scheduler
picks up the highest priority process
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Use Case: Preemptive Scheduling
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Use Case: Preemptive Scheduling
• The client machine runs wrk2 to send requests
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Use Case: Preemptive Scheduling
• The client machine runs wrk2 to send requests
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Packet I/O
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Summary
• The priority elevation trick allows us to control scheduling

to some extent while only using common OS features
• We think that this trick is sufficient for many use cases
• We hope this work contributes to researchers and developers who 

wish to have a quick and easy utility for scheduler development

https://github.com/yasukata/priority-elevation-trick
Supplemental Materials
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