
Developing Process Scheduling Policies in
User Space with Common OS Features

Kenichi Yasukata
IIJ Research Laboratory

APSys 2024 ‒ Kyoto, Japan ‒ 4th September

Kenta Ishiguro
Keio University

Process Scheduling
• Process scheduling is one of the keys to multiprogramming

where a CPU core runs multiple programs concurrently

2

Process Scheduling
• Process scheduling is one of the keys to multiprogramming

where a CPU core runs multiple programs concurrently

3

Time

Process Scheduling
• Process scheduling is one of the keys to multiprogramming

where a CPU core runs multiple programs concurrently

4

Time
A B C

Process Scheduling
• Process scheduling is one of the keys to multiprogramming

where a CPU core runs multiple programs concurrently
• Executed processes are switched at some point

A B C
Time

5

Process Scheduling
• Process scheduling is one of the keys to multiprogramming

where a CPU core runs multiple programs concurrently
• Executed processes are switched at some point
• A process scheduler makes a scheduling decision
• It decides the process to be executed next

A B C
Time

?

6

Process Scheduling
• Process schedulers and their scheduling policies have been

typically implemented as part of OS kernels

Scheduler

Us
er

Sp
ac

e
Ke

rn
el

Sp
ac

e

App

7

Process Scheduling
• Process schedulers and their scheduling policies have been

typically implemented as part of OS kernels
• Their goal is generality enabling a wide range of applications

to achieve not the best but good enough performance

Scheduler

Us
er

Sp
ac

e
Ke

rn
el

Sp
ac

e

App

8

Generic
Scheduling Policy

Process Scheduling
• Process schedulers and their scheduling policies have been

typically implemented as part of OS kernels
• Their goal is generality enabling a wide range of applications

to achieve not the best but good enough performance

Scheduler

Us
er

Sp
ac

e
Ke

rn
el

Sp
ac

e

App

9

On the other hand,
previous studies showed that
custom scheduling policies

contribute to
application performance

Custom
Scheduling Policy

Problem
• Despite their benefits, it is hard to develop and deploy

custom process scheduling policies

Scheduler

Us
er

Sp
ac

e
Ke

rn
el

Sp
ac

e

App

10

Custom
Scheduling Policy

Related Work (1/4)
• Despite their benefits, it is hard to develop and deploy

custom process scheduling policies
Scheduling enhancement by specific kernel/hypervisor extensions

Scheduler +
specific change

AppUs
er

Sp
ac

e
Ke

rn
el

Sp
ac

e

e.g., vTurbo (ATCʼ13),
Tableau (EuroSysʼ18),
Shinjuku (NSDIʼ19),
Caladan (OSDIʼ20)

11

Custom
Scheduling Policy

Related Work (1/4)
• Despite their benefits, it is hard to develop and deploy

custom process scheduling policies
Scheduling enhancement by specific kernel/hypervisor extensions

It is hard for users to deploy them
because of concerns for security,
stability, and future maintenance

e.g., vTurbo (ATCʼ13),
Tableau (EuroSysʼ18),
Shinjuku (NSDIʼ19),
Caladan (OSDIʼ20)

Scheduler +
specific change

AppUs
er

Sp
ac

e
Ke

rn
el

Sp
ac

e

12

Custom
Scheduling Policy

Related Work (2/4)
• Despite their benefits, it is hard to develop and deploy

custom process scheduling policies
Scheduling enhancement by specific user-space runtimes

e.g., Arachne (OSDIʼ18),
Shenango (NSDIʼ19),
Concord (SOSPʼ23)

Scheduler

Us
er

Sp
ac

e
Ke

rn
el

Sp
ac

e

13

Custom
Scheduling

Policy
App

Related Work (2/4)
• Despite their benefits, it is hard to develop and deploy

custom process scheduling policies
Scheduling enhancement by specific user-space runtimes

It is hard to employ them because
applications need to directly involve
the specific user-space runtimes

e.g., Arachne (OSDIʼ18),
Shenango (NSDIʼ19),
Concord (SOSPʼ23)

Scheduler

Us
er

Sp
ac

e
Ke

rn
el

Sp
ac

e

14

Custom
Scheduling

Policy
App

Related Work (3/4)
• Despite their benefits, it is hard to develop and deploy

custom process scheduling policies
Development frameworks

e.g., ghOSt (SOSPʼ21),
Syrup (SOSPʼ21),

Enoki (EuroSysʼ24)

Scheduler +
specific change

Us
er

Sp
ac

e
Ke

rn
el

Sp
ac

e Framework

15

Custom
Scheduling

Policy
App

Related Work (3/4)
• Despite their benefits, it is hard to develop and deploy

custom process scheduling policies
Development frameworks

e.g., ghOSt (SOSPʼ21),
Syrup (SOSPʼ21),

Enoki (EuroSysʼ24)

Scheduler +
specific change

Us
er

Sp
ac

e
Ke

rn
el

Sp
ac

e Framework

16

It is hard to deploy systems made on
them because the frameworks rely
on specific kernel extensions

Custom
Scheduling

Policy
App

Related Work (4/4)
• Despite their benefits, it is hard to develop and deploy

custom process scheduling policies
Using common OS features for scheduling policy development

e.g., Lachesis (Middlewareʼ21),
SFS (SCʼ22)Us

er
Sp

ac
e

Ke
rn

el
Sp

ac
e

App

Common features

17

Custom
Scheduling

Policy

Related Work (4/4)
• Despite their benefits, it is hard to develop and deploy

custom process scheduling policies
Using common OS features for scheduling policy development

e.g., Lachesis (Middlewareʼ21),
SFS (SCʼ22)Us

er
Sp

ac
e

Ke
rn

el
Sp

ac
e

App

Common features

18

Custom
Scheduling

Policy
They are for stream processing and
serverless computing platforms, and
not flexible enough to implement
complicated scheduling policies

This Work
• We present a mechanism called the priority elevation trick

19

This Work
• We present a mechanism called the priority elevation trick

The priority elevation trick

20

This Work
• We present a mechanism called the priority elevation trick

• enables flexible scheduling policy development in user space
The priority elevation trick

21

This Work
• We present a mechanism called the priority elevation trick

• enables flexible scheduling policy development in user space
• by only using common OS features

The priority elevation trick

22

This Work
• We present a mechanism called the priority elevation trick

• enables flexible scheduling policy development in user space
• by only using common OS features
• without necessarily relying on a specific user-space runtime

The priority elevation trick

23

Key Idea
• A kernel-space process scheduler normally gives a longer

execution time to a process having a higher priority

24

Key Idea
• A kernel-space process scheduler normally gives a longer

execution time to a process having a higher priority

Scheduler

Us
er

Sp
ac

e
Ke

rn
el

Sp
ac

e

25

Key Idea
• A kernel-space process scheduler normally gives a longer

execution time to a process having a higher priority

Scheduler

Us
er

Sp
ac

e
Ke

rn
el

Sp
ac

e

A B C

26

Key Idea
• A kernel-space process scheduler normally gives a longer

execution time to a process having a higher priority

1

Scheduler

Us
er

Sp
ac

e
Ke

rn
el

Sp
ac

e

A B C

12 Priorities
A higher value represents

a higher priority

27

Key Idea
• A kernel-space process scheduler normally gives a longer

execution time to a process having a higher priority

1

Scheduler

Us
er

Sp
ac

e
Ke

rn
el

Sp
ac

e

A B C

12

Time
A B C

The kernel-space scheduler will let
A run longer than B and C

28

Key Idea
• An extreme case: a process (A) has a very high priority

compared to the other processes (B and C)

1

Scheduler

Us
er

Sp
ac

e
Ke

rn
el

Sp
ac

e

A B C

12

29

Key Idea
• An extreme case: a process (A) has a very high priority

compared to the other processes (B and C)

∞ 1

Scheduler

Us
er

Sp
ac

e
Ke

rn
el

Sp
ac

e

A B C

1

30

Key Idea
• An extreme case: a process (A) has a very high priority

compared to the other processes (B and C)

∞ 1

Scheduler

Us
er

Sp
ac

e
Ke

rn
el

Sp
ac

e

A B C

1

Time
A

A will be mostly always executed, and
B and C are mostly never executed

31

Key Idea
• An extreme case: a process (B) has a very high priority

compared to the other processes (A and C)

∞
Scheduler

Us
er

Sp
ac

e
Ke

rn
el

Sp
ac

e

A B C

1

Time
B

B will be mostly always executed, and
A and C are mostly never executed

1

32

Key Idea
• An extreme case: a process (C) has a very high priority

compared to the other processes (A and B)

∞
Scheduler

Us
er

Sp
ac

e
Ke

rn
el

Sp
ac

e

A B C Time
C

C will be mostly always executed, and
A and B are mostly never executed

1 1

33

Key Idea
• An extreme case: a process (C) has a very high priority

compared to the other processes (A and B)

∞
Scheduler

Us
er

Sp
ac

e
Ke

rn
el

Sp
ac

e

A B C Time
C

C will be mostly always executed, and
A and B are mostly never executed

1 1

We can indirectly control the kernel-space process scheduler
by making sufficiently vast priority gaps among processes

using the kernel-provided priority-setting facility

34

Key Idea
• An extreme case: a process (C) has a very high priority

compared to the other processes (A and B)

∞
Scheduler

Us
er

Sp
ac

e
Ke

rn
el

Sp
ac

e

A B C Time
C

C will be mostly always executed, and
A and B are mostly never executed

1 1

We can indirectly control the kernel-space process scheduler
by making sufficiently vast priority gaps among processes;

using the kernel-provided priority-setting facility

35

Key Idea
• An extreme case: a process (C) has a very high priority

compared to the other processes (A and B)

∞
Scheduler

Us
er

Sp
ac

e
Ke

rn
el

Sp
ac

e

A B C Time
C

C will be mostly always executed, and
A and B are mostly never executed

1 1

We can indirectly control the kernel-space process scheduler
by making sufficiently vast priority gaps among processes;

we can do this by the kernel-provided priority-setting facility

36

Control Knobs for Prototypes on Linux
• sched_setscheduler system call: priority setting

• sched_setaffinity system call: CPU core affinity setting

37

Control Knobs for Prototypes on Linux
• sched_setscheduler system call: priority setting
• argument 1: process ID (pid) of a process
• argument 2: scheduling policy
• argument 3: parameter (e.g., priority value)

• sched_setaffinity system call: CPU core affinity setting
• argument 1: process ID (pid) of a process
• argument 2 and 3: CPU core affinity specification

38

Control Knobs for Prototypes on Linux
• sched_setscheduler system call: priority setting
• argument 1: process ID (pid) of a process
• argument 2: scheduling policy
• argument 3: parameter (e.g., priority value)

• sched_setaffinity system call: CPU core affinity setting
• argument 1: process ID (pid) of a process
• argument 2 and 3: CPU core affinity specification

The priority elevation trick can be applied for scheduling entities
having pids (i.e., processes, pthreads, vCPUs backed by QEMU)

39

Control Knobs for Prototypes on Linux
• sched_setscheduler system call: priority setting
• argument 1: process ID (pid) of a process
• argument 2: scheduling policy
• argument 3: parameter (e.g., priority value)

• sched_setaffinity system call: CPU core affinity setting
• argument 1: process ID (pid) of a process
• argument 2 and 3: CPU core affinity specification

We use the SCHED_FIFO policy of the Linux scheduler and
its prioritization scheme to configure extreme priority gaps

40

Control Knobs for Prototypes on Linux
• sched_setscheduler system call: priority setting
• argument 1: process ID (pid) of a process
• argument 2: scheduling policy
• argument 3: parameter (e.g., priority value)

• sched_setaffinity system call: CPU core affinity setting
• argument 1: process ID (pid) of a process
• argument 2 and 3: CPU core affinity specification

We use the SCHED_FIFO policy of the Linux scheduler and
its prioritization scheme to configure extreme priority gaps

41

Point
SCHED_FIFO always schedules

the highest priority process

Control Knobs for Prototypes on Linux
• sched_setscheduler system call: priority setting
• argument 1: process ID (pid) of a process
• argument 2: scheduling policy
• argument 3: parameter (e.g., priority value)

• sched_setaffinity system call: CPU core affinity setting
• argument 1: process ID (pid) of a process
• argument 2 and 3: CPU core affinity specification

We use the SCHED_FIFO policy of the Linux scheduler and
its prioritization scheme to configure extreme priority gaps

42

Point
SCHED_FIFO always schedules

the highest priority process

1

A B C

1
Time

A

In this case, A will continue to run

2

Control Knobs for Prototypes on Linux
• sched_setscheduler system call: priority setting
• argument 1: process ID (pid) of a process
• argument 2: scheduling policy
• argument 3: parameter (e.g., priority value)

• sched_setaffinity system call: CPU core affinity setting
• argument 1: process ID (pid) of a process
• argument 2 and 3: CPU core affinity specification

We use the SCHED_FIFO policy of the Linux scheduler and
its prioritization scheme to configure extreme priority gaps

43

Point
SCHED_FIFO always schedules

the highest priority process

1

A B C

1
Time

A

In this case, A will continue to run

2
These priorities values are static and will not be

changed as long as we do not touch

Control Knobs for Prototypes on Linux
• sched_setscheduler system call: priority setting
• argument 1: process ID (pid) of a process
• argument 2: scheduling policy
• argument 3: parameter (e.g., priority value)

• sched_setaffinity system call: CPU core affinity setting
• argument 1: process ID (pid) of a process
• argument 2 and 3: CPU core affinity specification

We use the SCHED_FIFO policy of the Linux scheduler and
its prioritization scheme to configure extreme priority gaps

44

Point
SCHED_FIFO always schedules

the highest priority process

1

A B C

1
Time

A

In this case, A will continue to run

2
These priorities values are static and will not be

changed as long as we do not touch

We can change the priority value by
calling sched_setscheduler

Control Knobs for Prototypes on Linux
• sched_setscheduler system call: priority setting
• argument 1: process ID (pid) of a process
• argument 2: scheduling policy
• argument 3: parameter (e.g., priority value)

• sched_setaffinity system call: CPU core affinity setting
• argument 1: process ID (pid) of a process
• argument 2 and 3: CPU core affinity specification

We use the SCHED_FIFO policy of the Linux scheduler and
its prioritization scheme to configure extreme priority gaps

45

Point
SCHED_FIFO always schedules

the highest priority process

1

A B C

1
Time

A

In this case, A will continue to run

2

Control Knobs for Prototypes on Linux
• sched_setscheduler system call: priority setting
• argument 1: process ID (pid) of a process
• argument 2: scheduling policy
• argument 3: parameter (e.g., priority value)

• sched_setaffinity system call: CPU core affinity setting
• argument 1: process ID (pid) of a process
• argument 2 and 3: CPU core affinity specification

We use the SCHED_FIFO policy of the Linux scheduler and
its prioritization scheme to configure extreme priority gaps

46

Point
SCHED_FIFO always schedules

the highest priority process

3

A B C

1
Time

A

In this case, A will continue to run

2

Control Knobs for Prototypes on Linux
• sched_setscheduler system call: priority setting
• argument 1: process ID (pid) of a process
• argument 2: scheduling policy
• argument 3: parameter (e.g., priority value)

• sched_setaffinity system call: CPU core affinity setting
• argument 1: process ID (pid) of a process
• argument 2 and 3: CPU core affinity specification

We use the SCHED_FIFO policy of the Linux scheduler and
its prioritization scheme to configure extreme priority gaps

47

Point
SCHED_FIFO always schedules

the highest priority process

3

A B C

1
Time

A

Now, B is the highest priority process

2

Control Knobs for Prototypes on Linux
• sched_setscheduler system call: priority setting
• argument 1: process ID (pid) of a process
• argument 2: scheduling policy
• argument 3: parameter (e.g., priority value)

• sched_setaffinity system call: CPU core affinity setting
• argument 1: process ID (pid) of a process
• argument 2 and 3: CPU core affinity specification

We use the SCHED_FIFO policy of the Linux scheduler and
its prioritization scheme to configure extreme priority gaps

48

Point
SCHED_FIFO always schedules

the highest priority process

3

A B C

1
Time

A

The execution is switched to B

2 B

Control Knobs for Prototypes on Linux
• sched_setscheduler system call: priority setting
• argument 1: process ID (pid) of a process
• argument 2: scheduling policy
• argument 3: parameter (e.g., priority value)

• sched_setaffinity system call: CPU core affinity setting
• argument 1: process ID (pid) of a process
• argument 2 and 3: CPU core affinity specification

We use the SCHED_FIFO policy of the Linux scheduler and
its prioritization scheme to configure extreme priority gaps

49

Point
SCHED_FIFO always schedules

the highest priority process

3

A B C

1
Time

A

The execution is switched to B

2 B

This is the behavior of SCHED_FIFO-applied processes

Control Knobs for Prototypes on Linux
• sched_setscheduler system call: priority setting
• argument 1: process ID (pid) of a process
• argument 2: scheduling policy
• argument 3: parameter (e.g., priority value)

• sched_setaffinity system call: CPU core affinity setting
• argument 1: process ID (pid) of a process
• argument 2 and 3: CPU core affinity specification

We use the SCHED_FIFO policy of the Linux scheduler and
its prioritization scheme to configure extreme priority gaps

50

Point
SCHED_FIFO always schedules

the highest priority process

3

A B C

1
Time

A

The execution is switched to B

2 B

The priority elevation trick leverages this behavior to
indirectly control the kernel-space process scheduler

Process Types Considered in the Trick
51

Process Types Considered in the Trick
• A normal process is normal and does not perform scheduling

A B C : normal process

52

Process Types Considered in the Trick
• A normal process is normal and does not perform scheduling
• A scheduler process schedules normal processes

S

A B C

: scheduler process

: normal process

53

Three Priority Values

S

A B C

: scheduler process

: normal process

High

Middle

Low

In-kernel run queue

54

Managed by SCHED_FIFO

Three Priority Values
• High is assigned to a scheduler process

S

A B C

: scheduler process

: normal process

High

Middle

Low

In-kernel run queue

55

Three Priority Values
• High is assigned to a scheduler process
• Middle and Low are for normal processes

S

A B C

: scheduler process

: normal process

High

Middle

Low

In-kernel run queue

56

Three Priority Values
• High is assigned to a scheduler process
• Middle and Low are for normal processes
• Middle: a normal process allowed to run

S

A B C

: scheduler process

: normal process

High

Middle

Low

In-kernel run queue

57

Three Priority Values
• High is assigned to a scheduler process
• Middle and Low are for normal processes
• Middle: a normal process allowed to run
• Low: a normal process not allowed to run

S

A B C

: scheduler process

: normal process

High

Middle

Low

In-kernel run queue

58

Initial Priority Setting
• High is assigned to a scheduler process
• Middle and Low are for normal processes
• Middle: a normal process allowed to run
• Low: a normal process not allowed to run

S

A B C

: scheduler process

: normal process

High

Middle

Low

S

A B C

In-kernel run queue

59

Initial Priority Setting
• The kernel maintains a list of sleeping

processes that are not considered
candidates for the scheduling

S

A B C

: scheduler process

: normal process

High

Middle

Low A B C

S

Sleep
Pr

io
rit

y

In-kernel run queue

60

Two CPU Core Assignment Patterns

S

A B C

: scheduler process

: normal process

S A S B S C S
Time

S

A B C

Shared
pattern

Dedicated
pattern

Core 1

Core 1

Core 2
Time

61

Two CPU Core Assignment Patterns

S

A B C

: scheduler process

: normal process

S A S B S C S
Time

S

A B C

Shared
pattern

Dedicated
pattern

Core 1

Core 1

Core 2
Time

62

The shared pattern runs
scheduler and normal processes

on the same CPU core

Two CPU Core Assignment Patterns

S

A B C

: scheduler process

: normal process

S A S B S C S
Time

S

A B C

Shared
pattern

Dedicated
pattern

Core 1

Core 1

Core 2
Time

The dedicated pattern runs
scheduler and normal processes

on different CPU cores

63

Two CPU Core Assignment Patterns

S

A B C

: scheduler process

: normal process

S A S B S C S
Time

S

A B C

Shared
pattern

Dedicated
pattern

Core 1

Core 1

Core 2
Time

We use sched_setaffinity for
the CPU core affinity setting

64

Priority Elevation
65

(Shared Pattern)

Time
S A S B S C S

From here, we look through how a round-robin scheduling policy can
be implemented with the shared pattern

Round-robin scheduling policy

Priority Elevation

Time
High

Middle

Low

Sleep
S

A B C

: scheduler process

: normal process
Pr

io
rit

y

A B C

S

(Shared Pattern)

In-kernel run queue

66

Priority Elevation

Time
High

Middle

Low

Sleep
S

A B C

: scheduler process

: normal process
Pr

io
rit

y

A B C

S

The kernel-space process scheduler
picks up the highest priority process

(Shared Pattern)

In-kernel run queue

67

Priority Elevation

Time
High

Middle

Low

Sleep
S

A B C

: scheduler process

: normal process
Pr

io
rit

y

A B C

S

The kernel-space process scheduler
picks up the highest priority process

(Shared Pattern)

The nature of SCHED_FIFO

In-kernel run queue

68

Priority Elevation

Time
High

Middle

Low

Sleep
S

A B C

: scheduler process

: normal process
Pr

io
rit

y

B C

S RunS

A

S has been started to run

(Shared Pattern)

In-kernel run queue

69

Priority Elevation

Time
High

Middle

Low

Sleep
S

A B C

: scheduler process

: normal process
Pr

io
rit

y

B C

S RunS

A

(Shared Pattern)

Scheduling decision:
First, letʼs run A

In-kernel run queue

70

Priority Elevation

Time
High

Middle

Low

Sleep
S

A B C

: scheduler process

: normal process
Pr

io
rit

y

B C

S RunS

A

Elevate Aʼs priority to Middle

(Shared Pattern)

In-kernel run queue

71

Priority Elevation

Time
High

Middle

Low

Sleep
S

A B C

: scheduler process

: normal process
Pr

io
rit

y

B C

S RunS

A

Elevate Aʼs priority to Middle

(Shared Pattern)

In-kernel run queue

72

We use sched_setscheduler for
this priority manipulation

Priority Elevation

Time
High

Middle

Low

Sleep
S

A B C

: scheduler process

: normal process
Pr

io
rit

y

B C

S RunS

AElevate Aʼs priority to Middle

(Shared Pattern)

In-kernel run queue

73

Priority Elevation

Time
High

Middle

Low

Sleep
S

A B C

: scheduler process

: normal process
Pr

io
rit

y

B C

S RunS

AElevate Aʼs priority to Middle

(Shared Pattern)

In-kernel run queue

74

Priority Elevation

Time
High

Middle

Low

Sleep
S

A B C

: scheduler process

: normal process

In-kernel run queue

Pr
io

rit
y

B C

S RunS

A

(Shared Pattern)
75

call the sleep function

Priority Elevation

Time
High

Middle

Low

Sleep
S

A B C

: scheduler process

: normal process

In-kernel run queue

Pr
io

rit
y

B C

S RunS

AEnter the sleep state

(Shared Pattern)
76

call the sleep function

Priority Elevation

Time
High

Middle

Low

Sleep
S

A B C

: scheduler process

: normal process

In-kernel run queue

Pr
io

rit
y

B C

RunS

A

S

Enter the sleep state

(Shared Pattern)
77

Priority Elevation

Time
High

Middle

Low

Sleep
S

A B C

: scheduler process

: normal process

In-kernel run queue

Pr
io

rit
y

B C

RunS

A

S

Enter the sleep state

(Shared Pattern)
78

Priority Elevation

Time
High

Middle

Low

Sleep
S

A B C

: scheduler process

: normal process

In-kernel run queue

Pr
io

rit
y

B C

RunS

A

S

Now, S is not the candidate
for the scheduling

(Shared Pattern)
79

Priority Elevation

Time
High

Middle

Low

Sleep
S

A B C

: scheduler process

: normal process

In-kernel run queue

Pr
io

rit
y

B C

RunS

A

S

The kernel-space process scheduler
picks up the highest priority process

(Shared Pattern)
80

Priority Elevation

Time
High

Middle

Low

Sleep
S

A B C

: scheduler process

: normal process

In-kernel run queue

Pr
io

rit
y

S

A

S

Run

CB

Execution is switched from S to A

(Shared Pattern)
81

Priority Elevation

Time
High

Middle

Low

Sleep
S

A B C

: scheduler process

: normal process

In-kernel run queue

Pr
io

rit
y

S

A

S

Run

A

CB

A has been resumed to run

(Shared Pattern)
82

Priority Elevation

Time
High

Middle

Low

Sleep
S

A B C

: scheduler process

: normal process

In-kernel run queue

Pr
io

rit
y

S

A

S

Run

A

CB

The timer expires and
the scheduler process wakes up

(Shared Pattern)
83

Priority Elevation

Time
High

Middle

Low

Sleep
S

A B C

: scheduler process

: normal process

In-kernel run queue

Pr
io

rit
y

S

A

S

Run

A

CB

The timer expires and
the scheduler process wakes up

(Shared Pattern)
84

Priority Elevation

Time
High

Middle

Low

Sleep
S

A B C

: scheduler process

: normal process

In-kernel run queue

Pr
io

rit
y

S

A Run

A

CB

The timer expires and
the scheduler process wakes up

S

(Shared Pattern)
85

Priority Elevation

Time
High

Middle

Low

Sleep
S

A B C

: scheduler process

: normal process

In-kernel run queue

Pr
io

rit
y

S

A Run

A S

CB

The kernel-space process scheduler
picks up the highest priority process

(Shared Pattern)
86

Priority Elevation

Time
High

Middle

Low

Sleep
S

A B C

: scheduler process

: normal process

In-kernel run queue

Pr
io

rit
y

S

A

A S Run

CB

Execution is switched from A to S

(Shared Pattern)
87

Priority Elevation

Time
High

Middle

Low

Sleep
S

A B C

: scheduler process

: normal process

In-kernel run queue

Pr
io

rit
y

S

A

A S RunS

CB

S has been resumed to run

(Shared Pattern)
88

Priority Elevation

Time
High

Middle

Low

Sleep
S

A B C

: scheduler process

: normal process

In-kernel run queue

Pr
io

rit
y

S

A

A S RunS

CB

(Shared Pattern)

Scheduling decision:
preempt A and run B

89

Priority Elevation

Time
High

Middle

Low

Sleep
S

A B C

: scheduler process

: normal process

In-kernel run queue

Pr
io

rit
y

S A S RunS

CB

Elevate Bʼs priority to Middle

(Shared Pattern)

A

90

Priority Elevation

Time
High

Middle

Low

Sleep
S

A B C

: scheduler process

: normal process

In-kernel run queue

Pr
io

rit
y

S A S RunS

C

Elevate Bʼs priority to Middle

(Shared Pattern)

A B

91

Priority Elevation

Time
High

Middle

Low

Sleep
S

A B C

: scheduler process

: normal process

In-kernel run queue

Pr
io

rit
y

S A S RunS

C

Lower Aʼs priority to Low

(Shared Pattern)

A B

92

Priority Elevation

Time
High

Middle

Low

Sleep
S

A B C

: scheduler process

: normal process

In-kernel run queue

Pr
io

rit
y

S A S RunS

C

Lower Aʼs priority to Low

(Shared Pattern)

B

A

93

Priority Elevation

Time
High

Middle

Low

Sleep
S

A B C

: scheduler process

: normal process

In-kernel run queue

Pr
io

rit
y

S A S RunS

AC

(Shared Pattern)

B

94

Priority Elevation

Time
High

Middle

Low

Sleep
S

A B C

: scheduler process

: normal process

In-kernel run queue

Pr
io

rit
y

S A S RunS

AC

Enter the sleep state

(Shared Pattern)

B

95

Priority Elevation

Time
High

Middle

Low

Sleep
S

A B C

: scheduler process

: normal process

In-kernel run queue

Pr
io

rit
y

S A RunS

AC

Enter the sleep state

S

(Shared Pattern)

B

96

Priority Elevation

Time
High

Middle

Low

Sleep
S

A B C

: scheduler process

: normal process

In-kernel run queue

Pr
io

rit
y

S A RunS

S

AC

The kernel-space process scheduler
picks up the highest priority process

(Shared Pattern)

B

97

Priority Elevation

Time
High

Middle

Low

Sleep
S

A B C

: scheduler process

: normal process

In-kernel run queue

Pr
io

rit
y

S A S

B

S

Run

AC

Execution is switched from S to B

(Shared Pattern)
98

Priority Elevation

Time
High

Middle

Low

Sleep
S

A B C

: scheduler process

: normal process

In-kernel run queue

Pr
io

rit
y

S A S

B

S

Run

B

AC

B has been resumed to run

(Shared Pattern)
99

Priority Elevation

Time
High

Middle

Low

Sleep
S

A B C

: scheduler process

: normal process

In-kernel run queue

Pr
io

rit
y

S A S

B

S

Run

B

AC

The timer expires and
the scheduler process wakes up

(Shared Pattern)
100

Priority Elevation

Time
High

Middle

Low

Sleep
S

A B C

: scheduler process

: normal process

In-kernel run queue

Pr
io

rit
y

S A S

B Run

B

AC

S

The timer expires and
the scheduler process wakes up

(Shared Pattern)
101

Priority Elevation

Time
High

Middle

Low

Sleep
S

A B C

: scheduler process

: normal process

In-kernel run queue

Pr
io

rit
y

S A S

B Run

B

AC

S

The kernel-space process scheduler
picks up the highest priority process

(Shared Pattern)
102

Priority Elevation

Time
High

Middle

Low

Sleep
S

A B C

: scheduler process

: normal process

In-kernel run queue

Pr
io

rit
y

S A S

B

B

AC

S Run

Execution is switched from B to S

(Shared Pattern)
103

Priority Elevation

Time
High

Middle

Low

Sleep
S

A B C

: scheduler process

: normal process

In-kernel run queue

Pr
io

rit
y

S A S

B

B

AC

S RunS

S has been resumed to run

(Shared Pattern)
104

Priority Elevation

Time
High

Middle

Low

Sleep
S

A B C

: scheduler process

: normal process

In-kernel run queue

Pr
io

rit
y

S A S

B

B

AC

S RunS

(Shared Pattern)

Scheduling decision:
preempt B and run C

105

We can do the same for C ...

Priority Elevation

Time
High

Middle

Low

Sleep
S

A B C

: scheduler process

: normal process

In-kernel run queue

Pr
io

rit
y

S A S B

AC

S RunS

Elevate Cʼs priority to Middle

(Shared Pattern)

B

106

We can do the same for C ...

Priority Elevation

Time
High

Middle

Low

Sleep
S

A B C

: scheduler process

: normal process

In-kernel run queue

Pr
io

rit
y

S A S B

A

S RunS

Elevate Cʼs priority to Middle

(Shared Pattern)

B C

107

We can do the same for C ...

Priority Elevation

Time
High

Middle

Low

Sleep
S

A B C

: scheduler process

: normal process

In-kernel run queue

Pr
io

rit
y

S A S

B

B

A

S RunS

Lower Bʼs priority to Low

(Shared Pattern)

C

108

We can do the same for C ...

Priority Elevation

Time
High

Middle

Low

Sleep
S

A B C

: scheduler process

: normal process

In-kernel run queue

Pr
io

rit
y

S A S B

A

S Run

B

S

Lower Bʼs priority to Low

(Shared Pattern)

C

109

We can do the same for C ...

Priority Elevation

Time
High

Middle

Low

Sleep
S

A B C

: scheduler process

: normal process

In-kernel run queue

Pr
io

rit
y

S A S B

A

S Run

B

S

Enter the sleep state

(Shared Pattern)

C

110

We can do the same for C ...

Priority Elevation

Time
High

Middle

Low

Sleep
S

A B C

: scheduler process

: normal process

In-kernel run queue

Pr
io

rit
y

S A S B

A

Run

B

S

S

Enter the sleep state

(Shared Pattern)

C

111

We can do the same for C ...

Priority Elevation

Time
High

Middle

Low

Sleep
S

A B C

: scheduler process

: normal process

In-kernel run queue

Pr
io

rit
y

S A S B

A

Run

B

S

S

The kernel-space process scheduler
picks up the highest priority process

(Shared Pattern)

C

112

We can do the same for C ...

Priority Elevation

Time
High

Middle

Low

Sleep
S

A B C

: scheduler process

: normal process

In-kernel run queue

Pr
io

rit
y

S A S B

B

C

S

Run

A

S

Execution is switched from S to C

(Shared Pattern)
113

We can do the same for C ...

Priority Elevation

Time
High

Middle

Low

Sleep
S

A B C

: scheduler process

: normal process

In-kernel run queue

Pr
io

rit
y

S A S B

B

C

S

Run

A

S C

C has been resumed to run

(Shared Pattern)
114

We can do the same for C ...

Priority Elevation

Time
High

Middle

Low

Sleep
S

A B C

: scheduler process

: normal process

In-kernel run queue

Pr
io

rit
y

S A S B

B

C

S

Run

A

S C

The timer expires and
the scheduler process wakes up

(Shared Pattern)
115

We can do the same for C ...

Priority Elevation

Time
High

Middle

Low

Sleep
S

A B C

: scheduler process

: normal process

In-kernel run queue

Pr
io

rit
y

S A S B

B

C Run

A

S C S

The timer expires and
the scheduler process wakes up

(Shared Pattern)
116

We can do the same for C ...

Priority Elevation

Time
High

Middle

Low

Sleep
S

A B C

: scheduler process

: normal process

In-kernel run queue

Pr
io

rit
y

S A S B

B

C Run

A

S C S

The kernel-space process scheduler
picks up the highest priority process

(Shared Pattern)
117

We can do the same for C ...

Priority Elevation

Time
High

Middle

Low

Sleep
S

A B C

: scheduler process

: normal process

In-kernel run queue

Pr
io

rit
y

S A S B

B

C

A

S C S Run

Execution is switched from C to S

(Shared Pattern)
118

We can do the same for C ...

Priority Elevation

Time
High

Middle

Low

Sleep
S

A B C

: scheduler process

: normal process

In-kernel run queue

Pr
io

rit
y

S A S B

B

C

A

S C S RunS

S has been resumed to run

(Shared Pattern)
119

We can do the same for C ...

Priority Elevation

Time
High

Middle

Low

Sleep
S

A B C

: scheduler process

: normal process

In-kernel run queue

Pr
io

rit
y

S A S B

BA

S C S RunS

C

Continue this loop

(Shared Pattern)
120

Priority Elevation

Time
High

Middle

Low

Sleep
S

A B C

: scheduler process

: normal process
Pr

io
rit

y

A B C

S

In-kernel run queue

(Dedicated Pattern)
121

Priority Elevation

Time
High

Middle

Low

Sleep
S

A B C

: scheduler process

: normal process
Pr

io
rit

y

A B C

S

In-kernel run queue

(Dedicated Pattern)
core 1

core 2

122

The dedicated pattern involves
multiple CPU cores

Priority Elevation

Time
High

Middle

Low

Sleep
S

A B C

: scheduler process

: normal process
Pr

io
rit

y

A B C

S

In-kernel run queue

(Dedicated Pattern)
123

The basic behavior is the same
as the shared pattern

Priority Elevation

Time
High

Middle

Low

Sleep
S

A B C

: scheduler process

: normal process
Pr

io
rit

y

A B C

S

In-kernel run queue

(Dedicated Pattern)
124

The scheduler process can control
the process to be executed through

the same priority elevation

Priority Elevation

Time
High

Middle

Low

Sleep
S

A B C

: scheduler process

: normal process
Pr

io
rit

y

S

In-kernel run queue
S

Run(core1)

(Dedicated Pattern)

A B

B

C

A

Run(core2)

C

Difference from the shared pattern:
the scheduler process does not need

to sleep to run a normal process

125

Limitation

Time
High

Middle

Low

Sleep
S

A B C

: scheduler process

: normal process
Pr

io
rit

y

S

In-kernel run queue
S

Run(core1)A B

B

C

A

Run(core2)

C

126

(for both shared and dedicated patterns)

Limitation

Time
High

Middle

Low

Sleep
S

A B C

: scheduler process

: normal process
Pr

io
rit

y

S

In-kernel run queue
S

Run(core1)A B

B

C

A

Run(core2)

C

The scheduler process does not have
a way to effectively detect

a normal processʼs sleep/wake up

127

(for both shared and dedicated patterns)

Limitation

Time
High

Middle

Low

Sleep
S

A B C

: scheduler process

: normal process
Pr

io
rit

y

S

In-kernel run queue
S

Run(core1)A B

B

C

A

Run(core2)

C

Enter the sleep state

128

The scheduler process does not have
a way to effectively detect

a normal processʼs sleep/wake up

(for both shared and dedicated patterns)

Limitation

Time
High

Middle

Low

Sleep
S

A B C

: scheduler process

: normal process
Pr

io
rit

y

S

In-kernel run queue
S

Run(core1)A B

B

C

A

Run(core2)

C

129

The scheduler process does not have
a way to effectively detect

a normal processʼs sleep/wake up

Enter the sleep state
(for both shared and dedicated patterns)

Limitation

Time
High

Middle

Low

Sleep
S

A B C

: scheduler process

: normal process
Pr

io
rit

y

S

In-kernel run queue
S

Run(core1)A B

B

C

A

Run(core2)

C

130

The scheduler process does not have
a way to effectively detect

a normal processʼs sleep/wake up

Enter the sleep state
(for both shared and dedicated patterns)

Limitation

Time
High

Middle

Low

Sleep
S

A B C

: scheduler process

: normal process
Pr

io
rit

y

S

In-kernel run queue
S

Run(core1)A B

B

C

A
Run(core2)

C

A is resumed to run

A

131

The scheduler process does not have
a way to effectively detect

a normal processʼs sleep/wake up

(for both shared and dedicated patterns)

Limitation

Time
High

Middle

Low

Sleep
S

A B C

: scheduler process

: normal process
Pr

io
rit

y

S

In-kernel run queue
S

Run(core1)A B

B

C

A
Run(core2)

C A

132

The scheduler process does not have
a way to effectively detect

a normal processʼs sleep/wake up

C wakes up

(for both shared and dedicated patterns)

Limitation

Time
High

Middle

Low

Sleep
S

A B C

: scheduler process

: normal process
Pr

io
rit

y

S

In-kernel run queue
S

Run(core1)A B

B

C

A
Run(core2)

C A

133

The scheduler process does not have
a way to effectively detect

a normal processʼs sleep/wake up

C wakes up

(for both shared and dedicated patterns)

Limitation

Time
High

Middle

Low

Sleep
S

A B C

: scheduler process

: normal process
Pr

io
rit

y

S

In-kernel run queue

Run(core1)A B

BA
Run(core2)

C

C

134

The scheduler process does not have
a way to effectively detect

a normal processʼs sleep/wake up

S

A

(for both shared and dedicated patterns)

Limitation

Time
High

Middle

Low

Sleep
S

A B C

: scheduler process

: normal process
Pr

io
rit

y

S

In-kernel run queue

Run(core1)A B

BA

C

C

135

The scheduler process does not have
a way to effectively detect

a normal processʼs sleep/wake up

S

A C

Run(core2)

(for both shared and dedicated patterns)
C is resumed to run

Limitation

Time
High

Middle

Low

Sleep
S

A B C

: scheduler process

: normal process
Pr

io
rit

y

S

In-kernel run queue

Run(core1)A B

BA

C

C

136

S

A C

Run(core2)It is hard for the scheduler process
to take this execution time
into account for scheduling

(for both shared and dedicated patterns)

Limitation

Time
High

Middle

Low

Sleep
S

A B C

: scheduler process

: normal process
Pr

io
rit

y

S

In-kernel run queue

Run(core1)A B

BA

C

C

137

S

A C

Run(core2)The priority elevation trick is not
appropriate for scheduling processes
heavily relying on kernel event APIs

Limitation

(for both shared and dedicated patterns)

Limitation

Time
High

Middle

Low

Sleep
S

A B C

: scheduler process

: normal process
Pr

io
rit

y

S

In-kernel run queue

Run(core1)A B

BA

C

C

138

S

A C

Run(core2)The priority elevation trick is not
appropriate for scheduling processes
heavily relying on kernel event APIs

Limitation

Despite this limitation,
the priority elevation trick has use cases

Evaluation
• How much are the overheads?
• Delay
• CPU overhead

• What are the use cases?
• Microsecond-scale time slicing
• Table-driven scheduling
• Preemptive scheduling

139

Evaluation: Delay

S

A

S S S

Sh
ar

ed
De

di
ca

te
d

B A

A B A

140

Evaluation: Delay

S

A

S S S

Sh
ar

ed
De

di
ca

te
d

B A

A B A

141
Normal process A and B

run a busy loop

B

A

: busy loop

: busy loop

Evaluation: Delay

S

A

S S S

Duration

Duration

Sh
ar

ed
De

di
ca

te
d

B A

A B A

142

• Duration: time for which a process
continues to run once it gets scheduled

Normal process A and B
run a busy loop

B

A

: busy loop

: busy loop

Evaluation: Delay

S

A

S S S

Duration Interval

Duration Interval

Sh
ar

ed
De

di
ca

te
d

B A

A B A

143

• Duration: time for which a process
continues to run once it gets scheduled
• Interval: time a descheduled process

waited until it gets scheduled again

Normal process A and B
run a busy loop

B

A

: busy loop

: busy loop

Evaluation: Delay

S

A

S S S

Duration Interval

Duration Interval

Sh
ar

ed
De

di
ca

te
d

B A

A B A

144

• Duration: time for which a process
continues to run once it gets scheduled
• Interval: time a descheduled process

waited until it gets scheduled again

Normal process A and B
run a busy loop

B

A

: busy loop

: busy loop

The scheduler process tries to
switch two processes

every 5 us

Evaluation: Delay

Entity Pattern Duration Interval
Process Shared 5.5 us 9.6 us
Process Dedicated 5.0 us 5.0 us
pthread Shared 5.5 us 9.2 us
pthread Dedicated 5.0 us 5.0 us
vCPU Shared 7.2 us 14.4 us
vCPU Dedicated 5.0 us 5.0 us

S

A

S S S

Duration Interval

Duration Interval

Sh
ar

ed
De

di
ca

te
d

B A

A B A

145

Evaluation: Delay

Entity Pattern Duration Interval
Process Shared 5.5 us 9.6 us
Process Dedicated 5.0 us 5.0 us
pthread Shared 5.5 us 9.2 us
pthread Dedicated 5.0 us 5.0 us
vCPU Shared 7.2 us 14.4 us
vCPU Dedicated 5.0 us 5.0 us

S

A

S S S

Duration Interval

Duration Interval

Sh
ar

ed
De

di
ca

te
d

B A

A B A

In the shared cases,
delays are added

146

Evaluation: Delay

Entity Pattern Duration Interval
Process Shared 5.5 us 9.6 us
Process Dedicated 5.0 us 5.0 us
pthread Shared 5.5 us 9.2 us
pthread Dedicated 5.0 us 5.0 us
vCPU Shared 7.2 us 14.4 us
vCPU Dedicated 5.0 us 5.0 us

S

A

S S S

Duration Interval

Duration Interval

Sh
ar

ed
De

di
ca

te
d

B A

A B A

In the shared cases,
delays are added

Delays are coming from
the scheduler process

147

Evaluation: Delay

Entity Pattern Duration Interval
Process Shared 5.5 us 9.6 us
Process Dedicated 5.0 us 5.0 us
pthread Shared 5.5 us 9.2 us
pthread Dedicated 5.0 us 5.0 us
vCPU Shared 7.2 us 14.4 us
vCPU Dedicated 5.0 us 5.0 us

S

A

S S S

Duration Interval

Duration Interval

Sh
ar

ed
De

di
ca

te
d

B A

A B A

In the dedicated cases,
A and B are switched every 5 us

as intended

148

Evaluation: Delay

Entity Pattern Duration Interval
Process Shared 5.5 us 9.6 us
Process Dedicated 5.0 us 5.0 us
pthread Shared 5.5 us 9.2 us
pthread Dedicated 5.0 us 5.0 us
vCPU Shared 7.2 us 14.4 us
vCPU Dedicated 5.0 us 5.0 us

S

A

S S S

Duration Interval

Duration Interval

Sh
ar

ed
De

di
ca

te
d

B A

A B A

In the dedicated cases,
A and B are switched every 5 us
But, the dedicate case uses

one additional CPU core

149

Evaluation: CPU Overhead

S

A

S S S

Sh
ar

ed
De

di
ca

te
d

B A

A B A

150

B

A

: busy loop

: sysbench (CPU)

Evaluation: CPU Overhead

S

A

S S S

Sh
ar

ed
De

di
ca

te
d

B A

A B A

151

A runs sysbench CPU bench

B

A

: busy loop

: sysbench (CPU)

B runs a busy loop

Evaluation: CPU Overhead

S

A

S S S

Sh
ar

ed
De

di
ca

te
d

B A

A B A

152

B

A

: busy loop

: sysbench (CPU)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 20 40 60 80 100 120 140 160
N

or
m

al
iz

ed
 S

co
re

Period [us]

Shared
Dedicated

Benchmark score with
different switching periods

Evaluation: CPU Overhead

S

A

S S S

Sh
ar

ed
De

di
ca

te
d

B A

A B A

153

B

A

: busy loop

: sysbench (CPU)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 20 40 60 80 100 120 140 160
N

or
m

al
iz

ed
 S

co
re

Period [us]

Shared
Dedicated

Switching period

Evaluation: CPU Overhead

S

A

Sh
ar

ed
De

di
ca

te
d

B A

A

154

B

A

: busy loop

: sysbench (CPU)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 20 40 60 80 100 120 140 160
N

or
m

al
iz

ed
 S

co
re

Period [us]

Shared
Dedicated

Normalized for the case where
A fully occupies a CPU core

Evaluation: CPU Overhead

S

A

S S S

Sh
ar

ed
De

di
ca

te
d

B A

A B A

155

B

A

: busy loop

: sysbench (CPU)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 20 40 60 80 100 120 140 160
N

or
m

al
iz

ed
 S

co
re

Period [us]

Shared
Dedicated

0.5 is the best score because
A and B equally share the core

Evaluation: CPU Overhead

S

A

S S S

Sh
ar

ed
De

di
ca

te
d

B A

A B A

156

B

A

: busy loop

: sysbench (CPU)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 20 40 60 80 100 120 140 160
N

or
m

al
iz

ed
 S

co
re

Period [us]

Shared
Dedicated

Gap to 0.5 shows the CPU overhead
coming from the scheduling

Evaluation: CPU Overhead

S

A

S S S

Sh
ar

ed
De

di
ca

te
d

B A

A B A

157

B

A

: busy loop

: sysbench (CPU)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 20 40 60 80 100 120 140 160
N

or
m

al
iz

ed
 S

co
re

Period [us]

Shared
Dedicated

Gap to 0.5 shows the CPU overhead
coming from the scheduling

A shorter period leads to higher overhead

Evaluation: CPU Overhead

S

A

S S S

Sh
ar

ed
De

di
ca

te
d

B A

A B A

158

B

A

: busy loop

: sysbench (CPU)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 20 40 60 80 100 120 140 160
N

or
m

al
iz

ed
 S

co
re

Period [us]

Shared
Dedicated

Gap to 0.5 shows the CPU overhead
coming from the scheduling

A shorter period leads to higher overhead

The dedicated case exhibits
lower overhead because of

the extra CPU core

Use Case: Microsecond-scale Time Slicing
• Previous work showed microsecond-scale time slicing

contributes to application performance
• vTurbo (USENIX ATCʼ13), micro-sliced cores (EuroSysʼ18)

159

Use Case: Microsecond-scale Time Slicing
• Previous work showed microsecond-scale time slicing

contributes to application performance
• vTurbo (USENIX ATCʼ13), micro-sliced cores (EuroSysʼ18)

• However, the minimum configurable time slice on Linux is
1 millisecond (ensured by the kernel build system)

160

Use Case: Microsecond-scale Time Slicing
• Previous work showed microsecond-scale time slicing

contributes to application performance
• vTurbo (USENIX ATCʼ13), micro-sliced cores (EuroSysʼ18)

• However, the minimum configurable time slice on Linux is
1 millisecond (ensured by the kernel build system)

• The priority elevation trick allows us to apply microsecond-
scale time slices on unmodified Linux

Here, we see how it affects networked server performance

161

Use Case: Microsecond-scale Time Slicing
• We implemented a networked server for the experiments

162

Use Case: Microsecond-scale Time Slicing
• We implemented a networked server for the experiments

Us
er

 S
pa

ce

163

Use Case: Microsecond-scale Time Slicing
• We implemented a networked server for the experiments

Packet I/OUs
er

 S
pa

ce

DPDK

164

Use Case: Microsecond-scale Time Slicing
• We implemented a networked server for the experiments

TCP/IP Stack

Packet I/OUs
er

 S
pa

ce

iip (SIGCOMM CCR)

DPDK

165

Use Case: Microsecond-scale Time Slicing
• We implemented a networked server for the experiments

Application

TCP/IP Stack

Packet I/OUs
er

 S
pa

ce Simple HTTP server

iip (SIGCOMM CCR)

DPDK

166

Use Case: Microsecond-scale Time Slicing
• The client machine runs wrk2 to send requests

Application

TCP/IP Stack

Packet I/O

167

Server machine Client machine

wrk2
HTTP

benchmark
client

100 Gbps link

Use Case: Microsecond-scale Time Slicing
• The client machine runs wrk2 to send requests

Application

TCP/IP Stack

Packet I/O

168

Server machine Client machine

wrk2
HTTP

benchmark
client

100 Gbps link

Use Case: Microsecond-scale Time Slicing

S S S

Sh
ar

ed

A B A
B

A

: busy loop

: networked server

169

Application

TCP/IP Stack

Packet I/O A runs the networked server

Use Case: Microsecond-scale Time Slicing

S S S

Sh
ar

ed

A B A
B

A

: busy loop

: networked server

170

Application

TCP/IP Stack

Packet I/O A runs the networked server

B runs a busy loop

Use Case: Microsecond-scale Time Slicing

S S S

Sh
ar

ed

A B A
B

A

: busy loop

: networked server

171

 0
 50

 100
 150
 200
 250
 300
 350

0.0 0.2 0.4 0.6 0.8 1.0 1.2
99

th
 %

ile
 L

at
en

cy
 [u

s]

Throughput [million requests/sec]

5 us
50 us
150 us

Performance of
the networked server on A
with different time slices

Use Case: Microsecond-scale Time Slicing

S S S

Sh
ar

ed

A B A
B

A

: busy loop

: networked server

172

 0
 50

 100
 150
 200
 250
 300
 350

0.0 0.2 0.4 0.6 0.8 1.0 1.2
99

th
 %

ile
 L

at
en

cy
 [u

s]

Throughput [million requests/sec]

5 us
50 us
150 us

Use Case: Microsecond-scale Time Slicing

S S S

Sh
ar

ed

A B A
B

A

: busy loop

: networked server

173

 0
 50

 100
 150
 200
 250
 300
 350

0.0 0.2 0.4 0.6 0.8 1.0 1.2
99

th
 %

ile
 L

at
en

cy
 [u

s]

Throughput [million requests/sec]

5 us
50 us
150 us

Use Case: Microsecond-scale Time Slicing

S S S

Sh
ar

ed

A B A
B

A

: busy loop

: networked server

174

 0
 50

 100
 150
 200
 250
 300
 350

0.0 0.2 0.4 0.6 0.8 1.0 1.2
99

th
 %

ile
 L

at
en

cy
 [u

s]

Throughput [million requests/sec]

5 us
50 us
150 us

A shorter switching period
leads to lower latency

Use Case: Microsecond-scale Time Slicing

S S S

Sh
ar

ed

A B A
B

A

: busy loop

: networked server

175

 0
 50

 100
 150
 200
 250
 300
 350

0.0 0.2 0.4 0.6 0.8 1.0 1.2
99

th
 %

ile
 L

at
en

cy
 [u

s]

Throughput [million requests/sec]

5 us
50 us
150 us

A shorter switching period
leads to lower latency

A too short switching period
leads to low throughput

Use Case: Microsecond-scale Time Slicing

S S S

Sh
ar

ed

A B A
B

A

: busy loop

: networked server

176

 0
 50

 100
 150
 200
 250
 300
 350

0.0 0.2 0.4 0.6 0.8 1.0 1.2
99

th
 %

ile
 L

at
en

cy
 [u

s]

Throughput [million requests/sec]

5 us
50 us
150 us

A shorter switching period
leads to lower latency

A too short switching period
leads to low throughput

because of the CPU overhead 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 20 40 60 80 100 120 140 160
N

or
m

al
iz

ed
 S

co
re

Period [us]

Shared
Dedicated

sysbench

Use Case: Microsecond-scale Time Slicing

S S S

Sh
ar

ed

A B A
B

A

: busy loop

: networked server

177

 0
 50

 100
 150
 200
 250
 300
 350

0.0 0.2 0.4 0.6 0.8 1.0 1.2
99

th
 %

ile
 L

at
en

cy
 [u

s]

Throughput [million requests/sec]

5 us
50 us
150 us

Time slice setting is
crucial for performance

Use Case: Microsecond-scale Time Slicing

S S S

Sh
ar

ed

A B A
B

A

: busy loop

: networked server

178

 0
 50

 100
 150
 200
 250
 300
 350

0.0 0.2 0.4 0.6 0.8 1.0 1.2
99

th
 %

ile
 L

at
en

cy
 [u

s]

Throughput [million requests/sec]

5 us
50 us
150 us

Time slice setting is
crucial for performance

The priority elevation trick
allows us to apply

microsecond-scale time slicing

Use Case: Table-driven Scheduling
• Previous work showed that table-driven scheduling adopting

static scheduling table improves application performance
• Tableau (EuroSysʼ18)

179

Use Case: Table-driven Scheduling
• Previous work showed that table-driven scheduling adopting

static scheduling table improves application performance
• Tableau (EuroSysʼ18)

• However, Linux does not provide a configuration interface
allowing users to install static scheduling tables

180

Use Case: Table-driven Scheduling
• Previous work showed that table-driven scheduling adopting

static scheduling table improves application performance
• Tableau (EuroSysʼ18)

• However, Linux does not provide a configuration interface
allowing users to install static scheduling tables

• The priority elevation trick allows us to realize table-driven
scheduling without changing the kernel

We see how it contributes to networked server performance

181

Use Case: Table-driven Scheduling
• Scenario: A, B, and C run on the same CPU core

182

A B CA

Use Case: Table-driven Scheduling
• Scenario: A, B, and C run on the same CPU core
• A runs the networked server, and B and C run a busy loop

183

A B CA

Busy loopNetworked server

Use Case: Table-driven Scheduling
• Scenario: A, B, and C run on the same CPU core
• A runs the networked server, and B and C run a busy loop

A B CA

Busy loopNetworked server

184

Application

TCP/IP Stack

Packet I/O

Server machine Client machine

wrk2
HTTP

benchmark
client

100 Gbps link

Use Case: Table-driven Scheduling
• Scenario: A, B, and C run on the same CPU core
• A runs the networked server, and B and C run a busy loop
• We assign 50% of CPU time to A and 25% to B and C each

50% 25% 25%

185

A B CA

Busy loopNetworked server

Use Case: Table-driven Scheduling
• Two ordering patterns: A-A-B-C and A-B-A-C

The kernel-space process scheduler does not offer
an interface to specify the order of the scheduling

A B CA

A B CA

A-A-B-C

A-B-A-C

186

Use Case: Table-driven Scheduling
• Two ordering patterns: A-A-B-C and A-B-A-C

The priority elevation trick allows us to implement
scheduling tables to ensure these ordering patterns

A B CA

A B CA

A-A-B-C

A-B-A-C

187

Use Case: Table-driven Scheduling

 0
 50

 100
 150
 200
 250
 300

0.0 0.2 0.4 0.6 0.8 1.0 1.2
99

th
 %

ile
 L

at
en

cy
 [u

s]
Throughput [million requests/sec]

A-A-B-C
A-B-A-C

188

Performance of the networked server on A

Use Case: Table-driven Scheduling

 0
 50

 100
 150
 200
 250
 300

0.0 0.2 0.4 0.6 0.8 1.0 1.2
99

th
 %

ile
 L

at
en

cy
 [u

s]
Throughput [million requests/sec]

A-A-B-C
A-B-A-C

189

Use Case: Table-driven Scheduling

 0
 50

 100
 150
 200
 250
 300

0.0 0.2 0.4 0.6 0.8 1.0 1.2
99

th
 %

ile
 L

at
en

cy
 [u

s]
Throughput [million requests/sec]

A-A-B-C
A-B-A-C

190

Use Case: Table-driven Scheduling

 0
 50

 100
 150
 200
 250
 300

0.0 0.2 0.4 0.6 0.8 1.0 1.2
99

th
 %

ile
 L

at
en

cy
 [u

s]
Throughput [million requests/sec]

A-A-B-C
A-B-A-C

191

A-B-A-C is constantly better

Use Case: Table-driven Scheduling

 0
 50

 100
 150
 200
 250
 300

0.0 0.2 0.4 0.6 0.8 1.0 1.2
99

th
 %

ile
 L

at
en

cy
 [u

s]
Throughput [million requests/sec]

A-A-B-C
A-B-A-C

192

A B CA

A B CA

A

A-B-A-C is constantly better

Use Case: Table-driven Scheduling

 0
 50

 100
 150
 200
 250
 300

0.0 0.2 0.4 0.6 0.8 1.0 1.2
99

th
 %

ile
 L

at
en

cy
 [u

s]
Throughput [million requests/sec]

A-A-B-C
A-B-A-C

193

A B CA

A B CA

A

Request

Request
A-B-A-C is constantly better

A request arrives when
B has been resumed

Use Case: Table-driven Scheduling

 0
 50

 100
 150
 200
 250
 300

0.0 0.2 0.4 0.6 0.8 1.0 1.2
99

th
 %

ile
 L

at
en

cy
 [u

s]
Throughput [million requests/sec]

A-A-B-C
A-B-A-C

194

A B CA

A B CA

A

Request

Request
Wait time

Wait time

A-B-A-C is constantly better

Use Case: Table-driven Scheduling

 0
 50

 100
 150
 200
 250
 300

0.0 0.2 0.4 0.6 0.8 1.0 1.2
99

th
 %

ile
 L

at
en

cy
 [u

s]
Throughput [million requests/sec]

A-A-B-C
A-B-A-C

195

A B CA

A B CA

A

Request

Request

The wait time for this request
is shorter in A-B-A-C

Wait time

Wait time

A-B-A-C is constantly better

Use Case: Table-driven Scheduling

 0
 50

 100
 150
 200
 250
 300

0.0 0.2 0.4 0.6 0.8 1.0 1.2
99

th
 %

ile
 L

at
en

cy
 [u

s]
Throughput [million requests/sec]

A-A-B-C
A-B-A-C

196

The wait time for this request
is shorter in A-B-A-C

A-B-A-C is constantly better

Table-driven scheduling realized
by the priority elevation trick
brings performance benefit

Use Case: Preemptive Scheduling
• Previous work proposed to adopt preemptive scheduling to

mitigate the head-of-line blocking issue
• Shinjuku (NSDIʼ19)

197

Use Case: Preemptive Scheduling
• Previous work proposed to adopt preemptive scheduling to

mitigate the head-of-line blocking issue
• Shinjuku (NSDIʼ19)

• The original Shinjuku system is built as a specialized OS

198

Use Case: Preemptive Scheduling
• Previous work proposed to adopt preemptive scheduling to

mitigate the head-of-line blocking issue
• Shinjuku (NSDIʼ19)

• The original Shinjuku system is built as a specialized OS

• The priority elevation trick allows us to implement
preemptive scheduling without changing the kernel

199

Use Case: Preemptive Scheduling
200

The head-of-line blocking issue

Use Case: Preemptive Scheduling

App
Request

201

The head-of-line blocking issue

Use Case: Preemptive Scheduling

App
Request 0.5 us

This request requires 0.5 us to generate a response

202

The head-of-line blocking issue

Use Case: Preemptive Scheduling

App
Request 500 us0.5 us

This request requires 500 us to generate a response

203

The head-of-line blocking issue

Use Case: Preemptive Scheduling
The head-of-line blocking issue

App
Request 500 us0.5 us 0.5 us

This request requires 0.5 us to generate a response

204

Use Case: Preemptive Scheduling
The head-of-line blocking issue

App
Request 500 us0.5 us 0.5 us

205

Use Case: Preemptive Scheduling
The head-of-line blocking issue

App
Request 500 us0.5 us 0.5 us

206

Use Case: Preemptive Scheduling
The head-of-line blocking issue

App
Request 500 us 0.5 us

0.5 us

The request is processed in 0.5 us

207

Use Case: Preemptive Scheduling
The head-of-line blocking issue

App
Request 0.5 us

0.5 us

The request is processed in 500 us

500 us

208

Use Case: Preemptive Scheduling
The head-of-line blocking issue

App
Request

0.5 us

The request is processed in 0.5 us

500 us 0.5 us

209

Use Case: Preemptive Scheduling
The head-of-line blocking issue

App
Request

0.5 us 500 us 0.5 us
This request had to wait for

500.5 us until it gets processed

210

500.5 us

Use Case: Preemptive Scheduling
The head-of-line blocking issue

App
Request

0.5 us 500 us 0.5 us
This request had to wait for

500.5 us until it gets processed

This request largely delays
the response

to subsequent requests

211

Use Case: Preemptive Scheduling
The head-of-line blocking issue

App
Request

0.5 us 500 us 0.5 us
This request had to wait for

500.5 us until it gets processed

212

This request largely delays
the response

to subsequent requests

Use Case: Preemptive Scheduling
The head-of-line blocking issue

App
Request

0.5 us 500 us 0.5 us
This request had to wait for

500.5 us until it gets processed

The Shinjuku (NSDIʼ19) work proposes to adopt
preemptive scheduling to mitigate head-of-line blocking

213

This request largely delays
the response

to subsequent requests

Use Case: Preemptive Scheduling
Preemptive scheduling

App
Request 500 us0.5 us 0.5 us

214

Use Case: Preemptive Scheduling
Preemptive scheduling

App
Request 0.5 us

The request is processed in 0.5 us

0.5 us

500 us

215

Use Case: Preemptive Scheduling
Preemptive scheduling

App
Request 0.5 us

The next request is now processed ...

0.5 us

216

Use Case: Preemptive Scheduling
Preemptive scheduling

App
Request 0.5 us

The request processing has not been finished
within a preconfigured threshold

0.5 us threshold

217

Use Case: Preemptive Scheduling
Preemptive scheduling

App
Request 0.5 us

The preemptive scheduling policy preempts the currently running worker
and runs another worker to process the subsequent request

0.5 us threshold

218

Use Case: Preemptive Scheduling
Preemptive scheduling

App
Request

The request is processed in 0.5 us

0.5 us threshold 0.5 us

219

Use Case: Preemptive Scheduling
Preemptive scheduling

App
Request

Then, the preempted worker is resumed

0.5 us threshold 0.5 us

220

Use Case: Preemptive Scheduling
Preemptive scheduling

App
Request

Then, the preempted worker is resumed

0.5 us threshold 0.5 us

This request had to wait for
0.5 us + threshold

221

0.5 us + threshold

Use Case: Preemptive Scheduling
Preemptive scheduling

App
Request

Then, the preempted worker is resumed

0.5 us threshold 0.5 us

This request had to wait for
0.5 us + threshold

Head-of-line blocking
is mitigated

222

Use Case: Preemptive Scheduling
Preemptive scheduling

App
Request

Then, the preempted worker is resumed

0.5 us threshold 0.5 us

This request had to wait for
0.5 us + threshold

Head-of-line blocking
is mitigated

We implement an equivalent mechanism with the priority elevation trick

223

Use Case: Preemptive Scheduling
• Pthread types

224

Use Case: Preemptive Scheduling
• Pthread types
• A worker pthreads handle application-level requests

A B C : worker

225

Use Case: Preemptive Scheduling
• Pthread types
• A worker pthreads handle application-level requests
• A dispatcher pthread

• extracts application-level requests by performing TCP/IP processing for
incoming packets

• dispatches the requests to worker pthreads

A B C : worker

D : dispatcher

226

Use Case: Preemptive Scheduling
• Pthread types
• A worker pthreads handle application-level requests
• A dispatcher pthread

• extracts application-level requests by performing TCP/IP processing for
incoming packets

• dispatches the requests to worker pthreads
• A switcher pthread preempts a worker pthread that continuously

runs longer than a preconfigured threshold

A B C : worker

D : dispatcherS : switcher

227

Use Case: Preemptive Scheduling
• Priority values
• 4:
• 3:
• 2:
• 1:
(a higher value represents a higher priority)

A B C : worker

D : dispatcherS : switcher

4

3

2

1

Sleep

228

In-kernel run queue

Use Case: Preemptive Scheduling
• Priority values
• 4: the switcher
• 3:
• 2:
• 1:
(a higher value represents a higher priority)

A B C : worker

D : dispatcherS : switcher

4

3

2

1

Sleep

In-kernel run queue
S

229

Use Case: Preemptive Scheduling
• Priority values
• 4: the switcher
• 3: a worker allowed by the dispatcher to run
• 2:
• 1:
(a higher value represents a higher priority)

A B C : worker

D : dispatcherS : switcher

4

3

2

1

Sleep

S

230

In-kernel run queue

Use Case: Preemptive Scheduling
• Priority values
• 4: the switcher
• 3: a worker allowed by the dispatcher to run
• 2: the dispatcher
• 1:
(a higher value represents a higher priority)

A B C : worker

D : dispatcherS : switcher

4

3

2

1

Sleep

D

S

231

In-kernel run queue

Use Case: Preemptive Scheduling
• Priority values
• 4: the switcher
• 3: a worker allowed by the dispatcher to run
• 2: the dispatcher
• 1: workers that are not allowed to run
(a higher value represents a higher priority)

A B C : worker

D : dispatcherS : switcher

4

3

2

1

Sleep

D

A B C

S

232

In-kernel run queue

Use Case: Preemptive Scheduling

Time
4

3

2

1

Sleep
S

A B C

: switcher

: worker

D : dispatcher

DPr
io

rit
y

A B C

S

233

In-kernel run queue

Use Case: Preemptive Scheduling

Time
4

3

2

1

Sleep
S

A B C

: switcher

: worker

D : dispatcher

DPr
io

rit
y

A B C

S

The kernel-space process scheduler
picks up the highest priority process

234

In-kernel run queue

Use Case: Preemptive Scheduling

Time
S

4

3

2

1

Sleep
S

A B C

: switcher

: worker

D : dispatcher

DPr
io

rit
y

A B C

S Run

S has been started to run

235

In-kernel run queue

Use Case: Preemptive Scheduling

Time
S

4

3

2

1

Sleep
S

A B C

: switcher

: worker

D : dispatcher

DPr
io

rit
y

A B C

S Run

Enter the sleep state by calling
read(timerfd)

236

In-kernel run queue

Use Case: Preemptive Scheduling

Time
S

4

3

2

1

Sleep
S

A B C

: switcher

: worker

D : dispatcher

DPr
io

rit
y

A B C

S Run

Enter the sleep state by calling
read(timerfd)

237

In-kernel run queue

Use Case: Preemptive Scheduling

Time
S

4

3

2

1

Sleep
S

A B C

: switcher

: worker

D : dispatcher

DPr
io

rit
y

A B C

Run

Enter the sleep state by calling
read(timerfd)

S

238

In-kernel run queue

Use Case: Preemptive Scheduling

Time
S

4

3

2

1

Sleep
S

A B C

: switcher

: worker

D : dispatcher

DPr
io

rit
y

S

A B C

Run

The kernel-space process scheduler
picks up the highest priority process

239

In-kernel run queue

Use Case: Preemptive Scheduling

Time
S

4

3

2

1

Sleep
S

A B C

: switcher

: worker

D : dispatcher

DPr
io

rit
y

S

A B C

RunExecution is switched from S to D

240

In-kernel run queue

Use Case: Preemptive Scheduling

Time
S

4

3

2

1

Sleep
S

A B C

: switcher

: worker

D : dispatcher

DPr
io

rit
yD

S

A B C

RunD has been started to run

241

In-kernel run queue

Use Case: Preemptive Scheduling

Time
S

4

3

2

1

Sleep
S

A B C

: switcher

: worker

D : dispatcher

DPr
io

rit
yD

S

A B C

RunD handles incoming packets and
dispatch requests to a worker

242

In-kernel run queue

Use Case: Preemptive Scheduling

Time
S

4

3

2

1

Sleep
S

A B C

: switcher

: worker

D : dispatcher

DPr
io

rit
yD

S

A B C

Run
Scheduling decision:

Run A for application-level
request handling

243

In-kernel run queue

Use Case: Preemptive Scheduling

Time
S

4

3

2

1

Sleep
S

A B C

: switcher

: worker

D : dispatcher

DPr
io

rit
yD

S

A B C

RunElevate Aʼs priority to 3

244

In-kernel run queue

Use Case: Preemptive Scheduling

Time
S

4

3

2

1

Sleep
S

A B C

: switcher

: worker

D : dispatcher

DPr
io

rit
yD

S

B C

A

RunElevate Aʼs priority to 3

245

In-kernel run queue

Use Case: Preemptive Scheduling

Time
S

4

3

2

1

Sleep
S

A B C

: switcher

: worker

D : dispatcher

DPr
io

rit
yD

S

B C

A

RunThe kernel-space process scheduler
picks up the highest priority process

246

In-kernel run queue

Use Case: Preemptive Scheduling

Time
S

4

3

2

1

Sleep
S

A B C

: switcher

: worker

D : dispatcher

DPr
io

rit
yD

B C

A Run

S

Execution is switched from D to A

247

In-kernel run queue

Use Case: Preemptive Scheduling

Time
S

4

3

2

1

Sleep
S

A B C

: switcher

: worker

D : dispatcher

DPr
io

rit
yD A

B C

A Run

S

A has been started to run

248

In-kernel run queue

Use Case: Preemptive Scheduling

Time
S

4

3

2

1

Sleep
S

A B C

: switcher

: worker

D : dispatcher

DPr
io

rit
yD A

B C

A Run

S

Set the timerfd that is
blocking the switcher pthread

timer

249

In-kernel run queue

Use Case: Preemptive Scheduling

Time
S

4

3

2

1

Sleep
S

A B C

: switcher

: worker

D : dispatcher

DPr
io

rit
yD A

B C

A Run

S
timer

Handle an application-level request

250

In-kernel run queue

Use Case: Preemptive Scheduling

Time
S

4

3

2

1

Sleep
S

A B C

: switcher

: worker

D : dispatcher

DPr
io

rit
yD A

B C

A Run

S

Handle an application-level request

timer

The timer expires

251

In-kernel run queue

Use Case: Preemptive Scheduling

Time
S

4

3

2

1

Sleep
S

A B C

: switcher

: worker

D : dispatcher

DPr
io

rit
yD A

B C

A Run

S

Handle an application-level request

The switcher pthread wakes up

252

In-kernel run queue

Use Case: Preemptive Scheduling

Time
S

4

3

2

1

Sleep
S

A B C

: switcher

: worker

D : dispatcher

DPr
io

rit
yD A

B C

A Run

Handle an application-level request

S
The switcher pthread wakes up

253

In-kernel run queue

Use Case: Preemptive Scheduling

Time
S

4

3

2

1

Sleep
S

A B C

: switcher

: worker

D : dispatcher

DPr
io

rit
yD A

B C

A Run

S
The switcher pthread wakes up

The kernel-space process scheduler
picks up the highest priority process

254

In-kernel run queue

Use Case: Preemptive Scheduling

Time
S

4

3

2

1

Sleep
S

A B C

: switcher

: worker

D : dispatcher

DPr
io

rit
yD A

B C

S Run

A

Execution is switched from A to S

255

In-kernel run queue

Use Case: Preemptive Scheduling

Time
S

4

3

2

1

Sleep
S

A B C

: switcher

: worker

D : dispatcher

DPr
io

rit
yD SA

B C

S Run

A

S has been resumed to run

256

In-kernel run queue

Use Case: Preemptive Scheduling

Time
S

4

3

2

1

Sleep
S

A B C

: switcher

: worker

D : dispatcher

DPr
io

rit
yD SA

B C

S Run

A

Lower Aʼs priority to 1

257

In-kernel run queue

Use Case: Preemptive Scheduling

Time
S

4

3

2

1

Sleep
S

A B C

: switcher

: worker

D : dispatcher

DPr
io

rit
yD SA

B C

S Run

Lower Aʼs priority to 1

A

258

In-kernel run queue

Use Case: Preemptive Scheduling

Time
S

4

3

2

1

Sleep
S

A B C

: switcher

: worker

D : dispatcher

DPr
io

rit
yD SA

B C A

S Run

Enter the sleep state by calling
read(timerfd)

259

In-kernel run queue

Use Case: Preemptive Scheduling

Time
S

4

3

2

1

Sleep
S

A B C

: switcher

: worker

D : dispatcher

DPr
io

rit
yD SA

B C A

Run

S

Enter the sleep state by calling
read(timerfd)

260

In-kernel run queue

Use Case: Preemptive Scheduling

Time
S

4

3

2

1

Sleep
S

A B C

: switcher

: worker

D : dispatcher

DPr
io

rit
yD S

S

A

B C A

Run

The kernel-space process scheduler
picks up the highest priority process

261

In-kernel run queue

Use Case: Preemptive Scheduling

Time
S

4

3

2

1

Sleep
S

A B C

: switcher

: worker

D : dispatcher

DPr
io

rit
yD S

S

A

B C A

RunExecution is switched from S to D

262

In-kernel run queue

Use Case: Preemptive Scheduling

Time
S

4

3

2

1

Sleep
S

A B C

: switcher

: worker

D : dispatcher

DPr
io

rit
yD S

S

DA

B C A

RunD has been started to run

263

In-kernel run queue

Use Case: Preemptive Scheduling

Time
S

4

3

2

1

Sleep
S

A B C

: switcher

: worker

D : dispatcher

DPr
io

rit
yD S

S

DA

B C A

Run
Scheduling decision:

Run B for application-level
request handling

264

In-kernel run queue

Use Case: Preemptive Scheduling

Time
S

4

3

2

1

Sleep
S

A B C

: switcher

: worker

D : dispatcher

DPr
io

rit
yD S

S

DA

B C A

RunElevate Bʼs priority to 3

265

In-kernel run queue

Use Case: Preemptive Scheduling

Time
S

4

3

2

1

Sleep
S

A B C

: switcher

: worker

D : dispatcher

DPr
io

rit
yD S

S

DA

C A

Run

B

Elevate Bʼs priority to 3

266

In-kernel run queue

Use Case: Preemptive Scheduling

Time
S

4

3

2

1

Sleep
S

A B C

: switcher

: worker

D : dispatcher

DPr
io

rit
yD S

S

DA

C A

Run

B

The kernel-space process scheduler
picks up the highest priority process

267

In-kernel run queue

Use Case: Preemptive Scheduling

Time
S

4

3

2

1

Sleep
S

A B C

: switcher

: worker

D : dispatcher

DPr
io

rit
yD S

S

DA

C A

B Run

Execution is switched from D to B

268

In-kernel run queue

Use Case: Preemptive Scheduling

Time
S

4

3

2

1

Sleep
S

A B C

: switcher

: worker

D : dispatcher

DPr
io

rit
yD S

S

D BA

C A

B Run

B has been resumed to run

269

In-kernel run queue

Use Case: Preemptive Scheduling

Time
S

4

3

2

1

Sleep
S

A B C

: switcher

: worker

D : dispatcher

DPr
io

rit
yD S

S

D BA

C A

B Run

Set the timerfd that is
blocking the switcher pthread

timer

270

In-kernel run queue

Use Case: Preemptive Scheduling

Time
S

4

3

2

1

Sleep
S

A B C

: switcher

: worker

D : dispatcher

DPr
io

rit
yD S

S

D BA

C A

Run

Handle an application-level request

timer

B

271

In-kernel run queue

Use Case: Preemptive Scheduling

Time
S

4

3

2

1

Sleep
S

A B C

: switcher

: worker

D : dispatcher

DPr
io

rit
yD S

S

D BA

C A

Run

Request handling has been done

timer

B

272

In-kernel run queue

Use Case: Preemptive Scheduling

Time
S

4

3

2

1

Sleep
S

A B C

: switcher

: worker

D : dispatcher

DPr
io

rit
yD S

S

D BA

C A

Run

Cancel the timerfd that is
blocking the switcher pthread

B

273

In-kernel run queue

Use Case: Preemptive Scheduling

Time
S

4

3

2

1

Sleep
S

A B C

: switcher

: worker

D : dispatcher

DPr
io

rit
yD S

S

D BA

C A

RunB

Lower Bʼs priority to 1

274

In-kernel run queue

Use Case: Preemptive Scheduling

Time
S

4

3

2

1

Sleep
S

A B C

: switcher

: worker

D : dispatcher

DPr
io

rit
yD S

S

D BA

C A

Run

B

Lower Bʼs priority to 1

275

In-kernel run queue

Use Case: Preemptive Scheduling

Time
S

4

3

2

1

Sleep
S

A B C

: switcher

: worker

D : dispatcher

DPr
io

rit
yD S

S

D BA

C A

Run

B

The kernel-space process scheduler
picks up the highest priority process

276

In-kernel run queue

Use Case: Preemptive Scheduling

Time
S

4

3

2

1

Sleep
S

A B C

: switcher

: worker

D : dispatcher

DPr
io

rit
yD S

S

D BA

C A

Run

B

Execution is switched from B to D

277

In-kernel run queue

Use Case: Preemptive Scheduling

Time
S

4

3

2

1

Sleep
S

A B C

: switcher

: worker

D : dispatcher

DPr
io

rit
yD S

S

D BA

C A

Run

B

D

D has been resumed to run

278

In-kernel run queue

Use Case: Preemptive Scheduling

Time
S

4

3

2

1

Sleep
S

A B C

: switcher

: worker

D : dispatcher

DPr
io

rit
yD S

S

D BA D

C

Run

A B

Scheduling decision:
Resume A for handling

the pending request

279

In-kernel run queue

Use Case: Preemptive Scheduling

Time
S

4

3

2

1

Sleep
S

A B C

: switcher

: worker

D : dispatcher

DPr
io

rit
yD S

S

D BA D

C

Run

A B

Set the timerfd that is
blocking the switcher pthread

timer

280

In-kernel run queue

Use Case: Preemptive Scheduling

Time
S

4

3

2

1

Sleep
S

A B C

: switcher

: worker

D : dispatcher

DPr
io

rit
yD S

S

D BA D

C

Run

A B

Elevate Aʼs priority to 3

timer

281

In-kernel run queue

Use Case: Preemptive Scheduling

Time
S

4

3

2

1

Sleep
S

A B C

: switcher

: worker

D : dispatcher

DPr
io

rit
yD S

S

D BA D

C

A

Run

B

Elevate Aʼs priority to 3

timer

282

In-kernel run queue

Use Case: Preemptive Scheduling

Time
S

4

3

2

1

Sleep
S

A B C

: switcher

: worker

D : dispatcher

DPr
io

rit
yD S

S

D BA D

C

A

Run

B

The kernel-space process scheduler
picks up the highest priority process

timer

283

In-kernel run queue

Use Case: Preemptive Scheduling

Time
S

4

3

2

1

Sleep
S

A B C

: switcher

: worker

D : dispatcher

DPr
io

rit
yD S

S

D BA D

C B

A Run

Execution is switched from D to A

timer

284

In-kernel run queue

Use Case: Preemptive Scheduling

Time
S

4

3

2

1

Sleep
S

A B C

: switcher

: worker

D : dispatcher

DPr
io

rit
yD S

S

D BA D A

C B

A Run

A has been resumed to run

timer

285

In-kernel run queue

Use Case: Preemptive Scheduling

Time
S

4

3

2

1

Sleep
S

A B C

: switcher

: worker

D : dispatcher

DPr
io

rit
yD S

S

D BA D A

C B

A Run

timer

Resume the suspended
application-level request handling

286

In-kernel run queue

Use Case: Preemptive Scheduling

Time
S

4

3

2

1

Sleep
S

A B C

: switcher

: worker

D : dispatcher

DPr
io

rit
yD S

S

D BA D A

C B

A Run

timer

Request handling has been done

287

In-kernel run queue

Use Case: Preemptive Scheduling

Time
S

4

3

2

1

Sleep
S

A B C

: switcher

: worker

D : dispatcher

DPr
io

rit
yD S

S

D BA D A

C B

A Run

Cancel the timerfd that is
blocking the switcher pthread

288

In-kernel run queue

Use Case: Preemptive Scheduling

Time
S

4

3

2

1

Sleep
S

A B C

: switcher

: worker

D : dispatcher

DPr
io

rit
yD S

S

D BA D A

C B

A Run

Lower Aʼs priority to 1

289

In-kernel run queue

Use Case: Preemptive Scheduling

Time
S

4

3

2

1

Sleep
S

A B C

: switcher

: worker

D : dispatcher

DPr
io

rit
yD S

S

D BA D A

C B

Run

Lower Aʼs priority to 1

A

290

In-kernel run queue

Use Case: Preemptive Scheduling

Time
S

4

3

2

1

Sleep
S

A B C

: switcher

: worker

D : dispatcher

DPr
io

rit
yD S

S

D BA D A

C B A

Run

The kernel-space process scheduler
picks up the highest priority process

291

In-kernel run queue

Use Case: Preemptive Scheduling

Time
S

4

3

2

1

Sleep
S

A B C

: switcher

: worker

D : dispatcher

DPr
io

rit
yD S

S

D BA D A D

C B A

RunDispatcher is resumed and
continues the loop

292

In-kernel run queue

Use Case: Preemptive Scheduling
• The client machine runs wrk2 to send requests

Application

TCP/IP Stack

Packet I/O

293

Server machine Client machine

wrk2
HTTP

benchmark
client

100 Gbps link

Use Case: Preemptive Scheduling
• The client machine runs wrk2 to send requests

Application

TCP/IP Stack

Packet I/O

294

Server machine Client machine

wrk2
HTTP

benchmark
client

100 Gbps link
Preemptive scheduling extension

Use Case: Preemptive Scheduling
295

 0
 100
 200
 300
 400
 500
 600
 700
 800

0.0 0.1 0.2 0.3 0.4 0.599
th

 %
ile

 L
at

en
cy

 [u
s]

Throughput [million requests/sec]

w/o preemption
w/ preemption

Use Case: Preemptive Scheduling
296

99.5% requests require 0.5 us
0.5% requests require 500 us

 0
 100
 200
 300
 400
 500
 600
 700
 800

0.0 0.1 0.2 0.3 0.4 0.599
th

 %
ile

 L
at

en
cy

 [u
s]

Throughput [million requests/sec]

w/o preemption
w/ preemption

Use Case: Preemptive Scheduling
297

99.5% requests require 0.5 us
0.5% requests require 500 us

 0
 100
 200
 300
 400
 500
 600
 700
 800

0.0 0.1 0.2 0.3 0.4 0.599
th

 %
ile

 L
at

en
cy

 [u
s]

Throughput [million requests/sec]

w/o preemption
w/ preemption

Use Case: Preemptive Scheduling
298

99.5% requests require 0.5 us
0.5% requests require 500 us

 0
 100
 200
 300
 400
 500
 600
 700
 800

0.0 0.1 0.2 0.3 0.4 0.599
th

 %
ile

 L
at

en
cy

 [u
s]

Throughput [million requests/sec]

w/o preemption
w/ preemption

Use Case: Preemptive Scheduling
299

99.5% requests require 0.5 us
0.5% requests require 500 us

 0
 100
 200
 300
 400
 500
 600
 700
 800

0.0 0.1 0.2 0.3 0.4 0.599
th

 %
ile

 L
at

en
cy

 [u
s]

Throughput [million requests/sec]

w/o preemption
w/ preemption

When preemptive scheduling is
not activated, the latency goes

higher than 500 us

Use Case: Preemptive Scheduling
300

99.5% requests require 0.5 us
0.5% requests require 500 us

 0
 100
 200
 300
 400
 500
 600
 700
 800

0.0 0.1 0.2 0.3 0.4 0.599
th

 %
ile

 L
at

en
cy

 [u
s]

Throughput [million requests/sec]

w/o preemption
w/ preemption

When preemptive scheduling is
activated, the latency goes

lower than 500 us

Use Case: Preemptive Scheduling
301

99.5% requests require 0.5 us
0.5% requests require 500 us

 0
 100
 200
 300
 400
 500
 600
 700
 800

0.0 0.1 0.2 0.3 0.4 0.599
th

 %
ile

 L
at

en
cy

 [u
s]

Throughput [million requests/sec]

w/o preemption
w/ preemption

Preemptive scheduling realized
by the priority elevation trick
successfully mitigated the
head-of-line blocking issue

Summary
• The priority elevation trick allows us to control scheduling

to some extent while only using common OS features
• We think that this trick is sufficient for many use cases
• We hope this work contributes to researchers and developers who

wish to have a quick and easy utility for scheduler development

https://github.com/yasukata/priority-elevation-trick
Supplemental Materials

302

https://github.com/yasukata/priority-elevation-trick

