APSys 2024 — Kyoto, Japan — 4th September

Developing Process Scheduling Policies in
User Space with Common OS Features

Kenichi Yasukata Kenta Ishiguro
Il) Research Laboratory Keio University

Process Scheduling

* Process scheduling is one of the keys to multiprogramming
where a CPU core runs multiple programs concurrently

Process Scheduling

* Process scheduling is one of the keys to multiprogramming
where a CPU core runs multiple programs concurrently

Process Scheduling

* Process scheduling is one of the keys to multiprogramming
where a CPU core runs multiple programs concurrently

Process Scheduling

* Process scheduling is one of the keys to multiprogramming
where a CPU core runs multiple programs concurrently

« Executed processes are switched at some point

Process Scheduling

* Process scheduling is one of the keys to multiprogramming
where a CPU core runs multiple programs concurrently

e Executed processes are switched at some point

« A process scheduler makes a scheduling decision
|t decides the process to be executed next

Time

Process Scheduling

* Process schedulers and their scheduling policies have been
typically implemented as part of OS kernels

{ Scheduler]

Process Scheduling

* Process schedulers and their scheduling policies have been
typically implemented as part of OS kernels

« Their goal is generality enabling a wide range of applications
to achieve not the best but good enough performance

Lgf

D

33 App J/
NN

————— Generic -
2 § Scheduling Policy
< %) Scheduler

Process Scheduling

* Process schedulers and their scheduling policies have been
typically implemented as part of OS kernels

« Their goal is generality enabling a wide range of applications
to achieve not the best but good enough performance

5o)
@ T App On the other hand,

» -\ previous studies showed that
————— Custom custom scheduling policies
?EJ % Scheduling Policy contribute to
G Scheduler application performance

Problem

« Despite their benefits, it is hard to develop and deploy
custom process scheduling policies

. 8 4 N
§ o App

NN 2
————— Custom -
?EJ % Scheduling Policy
S%) Scheduler

Related Work (1/4)

« Despite their benefits, it is hard to develop and deploy
custom process scheduling policies

Scheduling enhancement by specific kernel/hypervisor extensions

_ @ - \ e.g., vTurbo (ATC'13),
D y
L& A Tableau (EuroSys’18),
28 PP Shinjuku (NSDI'19).
_____ Custom - Caladan (OSDI'20)
o & | Scheduling Polic

_

5 o Scheduler +

)

specific change

Rel

ated Work (1/4)

« Despite their benefits, it is hard to develop and deploy
custom process scheduling policies

Scheduling enhancement by specific kernel/hypervisor extensions

_ @ - \ e.g., vTurbo (ATC'13),

O y

L& A Tableau (EuroSys’18),

28 PP Shinjuku (NSDI'19),
_____ Custom - Caladan (OSDI'20)

= % Scheduling Polic It is hard for users to deploy them
E =3 Scheduler + because of concerns for security,

specific change stability, and future maintenance

12

Related Work (2/4)

« Despite their benefits, it is hard to develop and deploy
custom process scheduling policies

Scheduling enhancement by specific user-space runtimes

f(

s Custom e.g., Arachne (OSDI'18),
2 & || Scheduling | App Shenango (NSDI'19),
“ I Policy Concord (SOSP’23)

13

14

Related Work (2/4)

« Despite their benefits, it is hard to develop and deploy
custom process scheduling policies

Scheduling enhancement by specific user-space runtimes
f(

s Custom e.g., Arachne (OSDI'18),
2 & || Scheduling | App Shenango (NSDI'19),
“ I Policy Concord (SOSP’23)

?C) § It is hard to employ them because
E =3 applications need to directly involve
the specific user-space runtimes

Related Work (3/4)

« Despite their benefits, it is hard to develop and deploy
custom process scheduling policies

Development frameworks

- ¢ [Custom e.g., hOSt (SOSP'21),
© & | Scheduling Syrup (SOSP’21),
@ (Policy Enoki (EuroSys’24)

Framework ¥

Scheduler +
_specific change |

L
(

15

16

Related Work (3/4)

« Despite their benefits, it is hard to develop and deploy
custom process scheduling policies

Development frameworks

- ¢ [Custom e.g., hOSt (SOSP'21),
Lz Scheduling Syrup (SOSP'21).
@ (Policy Enoki (EuroSys’24)

Framework ¥ . It is hard to deploy systems made on

Scheduler + them because the frameworks rely
_specific change + on specific kernel extensions

L
(

Related Work (4/4)

« Despite their benefits, it is hard to develop and deploy
custom process scheduling policies

Using common OS features for scheduling policy development
r N

= 3 Custom |~ e.g., Lachesis (Middleware'21),
< & | Scheduling | App SFS (SC'22)
@ | Policy J____

D O
C 3
O O Common features
N

18

Related Work (4/4)

« Despite their benefits, it is hard to develop and deploy
custom process scheduling policies

Using common OS features for scheduling policy development
r N

5 0 Custom | e.g., Lachesis (Middleware’21),
« 3 | Scheduling |f App SFS (SC'22)
@ | Policy J____
T I‘ """"" They are for stream processing and
= % serverless computing platforms, and
E & Common features not flexible enough to implement

complicated scheduling policies

This Work

 We present a mechanism called the priority elevation trick

19

20

This Work

 We present a mechanism called the priority elevation trick

The priority elevation trick

This Work

 We present a mechanism called the priority elevation trick

The priority elevation trick

~
« enables flexible scheduling policy development in user space

o J

This Work

 We present a mechanism called the priority elevation trick

The priority elevation trick

~
« enables flexible scheduling policy development in user space

* by only using common OS features

o J

This Work

 We present a mechanism called the priority elevation trick

The priority elevation trick ~

« enables flexible scheduling policy development in user space
* by only using common OS features

\- without necessarily relying on a specific user-space runtime)

Key |dea

* A kernel-space process scheduler normally gives a longer
execution time to a process having a higher priority

24

25

Key |dea

* A kernel-space process scheduler normally gives a longer
execution time to a process having a higher priority

{ Scheduler]

Key |dea

* A kernel-space process scheduler normally gives a longer
execution time to a process having a higher priority

{ Scheduler }

26

Key |dea

* A kernel-space process scheduler normally gives a longer
execution time to a process having a higher priority

A higher value represents
a higher priority

{ Scheduler]

21

23

Key |dea

* A kernel-space process scheduler normally gives a longer
execution time to a process having a higher priority

The kernel-space scheduler will let

O QO
Ny { Scheduler A run longer than B and C

Key |dea

« An extreme case: a process (A) has a very high priority
compared to the other processes (B and C)

O
@)
q0)
%) { Scheduler }

29

Key |dea

« An extreme case: a process (A) has a very high priority
compared to the other processes (B and C)

{ Scheduler }

30

31

Key |dea

« An extreme case: a process (A) has a very high priority
compared to the other processes (B and C)

A will be mostly always executed, and

o 9
@)
S ©
%) Schedul
N cheauler B and C are mostly never executed

32

Key |dea

« An extreme case: a process (B) has a very high priority
compared to the other processes (A and C)

B will be mostly always executed, and

o 9
@)
S ©
%) Schedul
N cheauler A and C are mostly never executed

33

Key |dea

« An extreme case: a process (C) has a very high priority
compared to the other processes (A and B)

C will be mostly always executed, and

o 9
@)
S ©
%) Schedul
N cheauler A and B are mostly never executed

34

Key |dea

We can indirectly control the kernel-space process scheduler

C will be mostly always executed, and

{ Scheduler A and B are mostly never executed

35

Key |dea

We can indirectly control the kernel-space process scheduler
by making sufficiently vast priority gaps among processes;

cfoe
1 1 OO

C will be mostly always executed, and

{ Scheduler A and B are mostly never executed

36

Key |dea

We can indirectly control the kernel-space process scheduler
by making sufficiently vast priority gaps among processes;
we can do this by the kernel-provided priority-setting facility

C will be mostly always executed, and

{ Scheduler A and B are mostly never executed

Control Knobs for Prototypes on Linux

« sched_setscheduler system call: priority setting

e sched_setaffinity system call: CPU core affinity setting

37

Control Knobs for Prototypes on Linux

« sched_setscheduler system call: priority setting
« argument 1: process ID (pid) of a process
« argument 2: scheduling policy
- argument 3: parameter (e.g., priority value)

e sched_setaffinity system call: CPU core affinity setting
« argument 1: process ID (pid) of a process
« argument 2 and 3: CPU core affinity specification

33

39

Control Knobs for Prototypes on Linux

« sched_setscheduler system call: priority setting
« argument 1: process ID (pid) of a process
« argument 2: scheduling policy
- argument 3: paramieter (e.g., priority value)

e sched_setaffinifty system call: CPU core affinity setting
« argument 1: procesk ID (pid) of a process
« argument 2 and 3: core affinity specification

The priority elevation trick can be applied for scheduling entities
having pids (i.e., processes, pthreads, vCPUs backed by QEMU)

Control Knobs for Prototypes on Linux

« sched_setscheduler system call: priority setting
« argument 1: process ID (pid) of a process
« argument 2: scheduling policy
« argument 3: parameterf(e.g., priority value)

« sched_setaffinity system call: CPU core affinity setting
« argument 1: process |D (pid) of a process
« argument 2 and 3: CPU core affinity specification

We use the SCHED FIFO policy of the Linux scheduler and
its prioritization scheme to configure extreme priority gaps

40

Control Knobs for Prototypes on Linux

« sched_setscheduler system call: priority setting
« argument 1: process ID (pid) of a process
« argument 2: scheduling policy

« argument 3: parameterf(e.g., priority value)

e sched_setaffinity sy
« argument 1: process |D (g

-

« argument 2 and 3: CRPU c«

We use the SCHED FIFO policy of the Linux scheduler and

Point

SCHED FIFO always schedules
the highest priority process

~

)

its prioritization scheme to configure extreme priority gaps

Control Knobs for Prototypes on Linux

« sched_setscheduler system call: priority setting
/

~fede
2 1 1y -

e argument 1: Process < SL M I:L)MCHL?dUleS
. argument 2 and 3: CPU ¢ the highest priority process
We use the SCHED FIFO policy of the Linux scheduler and
its prioritization scheme to configure extreme priority gaps

In this case, A will continue to run

o

Control Knobs for Prototypes on Linux

« sched_setscheduler system call: priority setting

In this case, A will continue to run

] — dules
{ These priorities values are static and will not be F%

changed as long as we do not touch

We use the SCHED FIFOmhe Linux scheduler and
its prioritization scheme to configure extreme priority gaps

43

Control Knobs for Prototypes on Linux

« sched_setscheduler system call: priority setting

/lﬂl

\ =
These priorities values are static and will not be €
changed as long as we do not touch

In this case. A will continue to run
We can change the priority value by
callmg sched_setscheduler \

We use the SCHED FIFOmhe Linux scheduler and
its prioritization scheme to configure extreme priority gaps

Control Knobs for Prototypes on Linux

« sched_setscheduler system call: priority setting
/

2 1 1 EEEN

N R S
e argument 1: Process < SL M I:L)MCHL?dUleS
« argument 2 and 3: CPU ¢

the highest priority process
We use the SCHED FIFO policy of the Linux scheduler and
its prioritization scheme to configure extreme priority gaps

In this case, A will continue to run

Control Knobs for Prototypes on Linux

« sched_setscheduler system call: priority setting
/

2 3 1 EEEN

N R -
e argument 1: Process < SL M I:L)MCHL?dUleS
« argument 2 and 3: CPU ¢

the highest priority process
We use the SCHED FIFO policy of the Linux scheduler and
its prioritization scheme to configure extreme priority gaps

In this case, A will continue to run

Control Knobs for Prototypes on Linux

« sched_setscheduler system call: priority setting

Now, B is the highest priority process

. argument 1: Process S M I:L)MCHL?dUleS
. argument 2 and 3: CPU ¢ the highest priority process
We use the SCHED FIFO policy of the Linux scheduler and
its prioritization scheme to configure extreme priority gaps

47

Control Knobs for Prototypes on Linux

« sched_setscheduler system call: priority setting

The execution is switched to B

. argument 1: Process S M I:L)MCHL?dUleS
. argument 2 and 3: CPU ¢ the highest priority process
We use the SCHED FIFO policy of the Linux scheduler and
its prioritization scheme to configure extreme priority gaps

48

Control Knobs for Prototypes on Linux

« sched_setscheduler system call: priority setting
/

a

? :
= el

The execution is switched to B

{ This is the behavior of SCHED FIFO-applied processes

\/'/y
We use the SCHED FIFO policy of the Linux scheduler and

its prioritization scheme to configure extreme priority gaps

>

49

Control Knobs for Prototypes on Linux

« sched_setscheduler system call: priority setting
/

a

_ :
\

The execution is switched to B

The priority elevation trick leverages this behavior to
indirectly control the kernel-space process scheduler |

Vv UST UTTC JUOTTL D T 1T U PUTICY OT TUTC CITTUOX STTTTCUUTTT arTyu
its prioritization scheme to configure extreme priority gaps

50

Process lypes Considered in the Trick

b1

Process lypes Considered in the Trick

A normal process is normal and does not perform scheduling

oV

Process lypes Considered in the Trick

A normal process is normal and does not perform scheduling
* A scheduler process schedules normal processes

53

Three Priority Values

Managed by SCHED_FIFO \<

High

Middle

Low

b4

In-kernel run queue

Three Priority Values

« High is assigned to a scheduler process

High

Middle

e Low

: scheduler process
. B . normal process

59

In-kernel run queue

Three Priority Values

« High is assigned to a scheduler process

 Middle and Low are for normal processes
High

Middle

Low

56

In-kernel run queue

5/

Three Priority Values

« High is assigned to a scheduler process

 Middle and Low are for normal processes
» Middle: a normal process allowed to run _ Hjgh

In-kernel run queue

Middle

Low

Three Priority Values

« High is assigned to a scheduler process

 Middle and Low are for normal processes
» Middle: a normal process allowed to run _ Hjgh
 Low: a normal process not allowed to

N

Middle

Low

53

In-kernel run queue

Initial Priority Setting

« High is assigned to a scheduler process

 Middle and Low are for normal processes
» Middle: a normal process allowed to run _ Hjgh
 Low: a normal process not allowed to

N

Middle

Low

59

In-kernel run queue

080

00

Initial Priority Setting

« The kernel maintains a list of sleeping
processes that are not considered

didates for th heduli
candidates for the scheduling ~ High

In-kernel run queue

Middle

(088

Sleep

Two CPU Core Assignment Patterns

-

Shared
pattern Core 1% 5
_
g C 1
Dedicated ore =

pattern

Two CPU Core Assignment Patterns

-

o

Shared
pattern

Core 1S

The shared pattern runs
scheduler and normal processes

on the same CPU core

62

Two CPU Core Assignment Patterns

-~

C 1 S A
« S |sass=ss >
Dedicated ore T
pattern 'me
J

The dedicated pattern runs
scheduler and normal processes

on different CPU cores

03

o4

Two CPU Core Assignment Patterns

-

Shared
pattern Core 115
_
g C 1
Dedicated ore
pattern

We use sched_setaffinity for
the CPU core affinity setting

Priority Elevation (Shared Pattern)

Round-robin scheduling policy

BB -5 o

From here, we look through how a round-robin scheduling policy can
be implemented with the shared pattern

65

06

Priority Elevation (Shared Pattern)

Time

> High
2

S~ Middle
an

— Low

Sleep

In-kernel run queue

080

of

Priority Elevation (Shared Pattern)

In-kernel run queue

... > — High g

The kernel-space process scheduler

picks up the highest priority process = Middle

- [06

Sleep

oy

03

Priority Elevation (Shared Pattern)

In-kernel run queue

... > — High g

The kernel-space process scheduler .
. . T — Middle
picks up the highest priority process A

The nature of SCHED_FIFOI — Low B

oy

Sleep

09

Priority Elevation (Shared Pattern)

Time

> High
2

S~ Middle
an

— Low

Sleep

In-kernel run queue

«Run

080

70

Priority Elevation (Shared Pattern)

First, let’'s run A

In-kernel run queue

Scheduling decision:

_«Run

Middle

— Low

080

Sleep

Priority Elevation (Shared Pattern)

Elevate A’s priority to Middle

Priority
\

Middle

— Low

Sleep

71

In-kernel run queue

«Run

ﬁa

2

Priority Elevation (Shared Pattern)

We use sched_setscheduler for

this priority manipulation _ In-kernel run queue

Time
> .

— High || S Run
g .

Elevate A’s priority to Middle 2— Middle
o
N J
B

— Low

Sleep

Priority Elevation (Shared Pattern)

Elevate A’s priority to Middle

Priority
\

Middle

— Low

Sleep

73

In-kernel run queue

«Run

*

80

Priority Elevation (Shared Pattern)

Elevate A’s priority to Middle

Priority
\

Middle

— Low

Sleep

4

In-kernel run queue

«Run

80

Priority Elevation (Shared Pattern)

‘ call the sleep function J

Time

> High
2

S~ Middle
an

— Low

Sleep

79

In-kernel run queue

« Run

80

76

Priority Elevation (Shared Pattern)

‘ call the sleep function J In-kernel run queue
= Time
> High « Run
ey
Enter the sleep state 2— Middle | BE
o
N _/

80

— Low

Sleep

rf

Priority Elevation (Shared Pattern)

In-kernel run queue

> High «Run

Middle

Priority
\

80

— Low

Sleep

/3

Priority Elevation (Shared Pattern)

In-kernel run queue

> High «Run

Middle
— Low B
Sleep

Priority
\

Priority Elevation (Shared Pattern)

79

Now, S is not the candidate
for the scheduling

Priority Elevation (Shared Pattern)

The kernel-space process scheduler
picks up the highest priority process

30

In-kernel run queue

« Run

80

31

Priority Elevation (Shared Pattern)

Time
> High
2
S~ Middle
o
— Low
Sleep

In-kernel run queue

«Run

80

32

Priority Elevation (Shared Pattern)

A has been resumed to run

Priority

Middle

— Low

Sleep

In-kernel run queue

«Run

80

83

Priority Elevation (Shared Pattern)

In-kernel run queue

=>
The timer expires and :§< Middle
the scheduler process wakes up a

« Run
— Low B
Sleep

34

Priority Elevation (Shared Pattern)

In-kernel run queue

=>
The timer expires and :§< Middle
the scheduler process wakes up a

« Run

— Low

Sleep

389

Priority Elevation (Shared Pattern)

In-kernel run queue

A\

=>
The timer expires and '5
the scheduler process wakes up a

L —= Middle | BE «Run

— Low

Sleep

386

Priority Elevation (Shared Pattern)

In-kernel run queue

S

«Run
— Low B

Sleep

The kernel-space process scheduler

picks up the highest priority process =~ Miadle

Dy

31

Priority Elevation (Shared Pattern)

In-kernel run queue

— High «Run
Middle
00

— Low

Sleep

83

Priority Elevation (Shared Pattern)

In-kernel run queue

— High «Run
Middle
00

— Low

Sleep

39

Priority Elevation (Shared Pattern)

\preempt A and run B

In-kernel run queue

_«Run

Time
..... .(.....................; — High
Scheduling decision: —

Middle

— Low

80

Sleep

90

Priority Elevation (Shared Pattern)

Time
A IIIIIIIIIIIIIIIIIIIIIIIIIII
> > High
N2
Elevate B’s priority to Middle -§< Middle
o
J

— Low

Sleep

In-kernel run queue

«Run

C1c

91

Priority Elevation (Shared Pattern)

In-kernel run queue

Time
«| S A S iesssssnsnsnnnnnnnnnnnnnnnsn > ngh « Runh
4) ..?
Elevate B’s priority to Middle -§< Middle
\ J -

— Low

Sleep

Priority Elevation (Shar

92

ed Pattern)

In-kernel run queue

Time
A S iesssssnsnsnnnnnnnnnnnnnnnsn > ngh « Run
N2
Lower A's priority to Low -§< Middle
priority | ALE

— Low

Sleep

93

Priority Elevation (Shared Pattern)

Time
N S lussnssnnnnnnnnnnnnnnnnnnns
> > High
N2
Lower A’s priority to Low -§< Middle
o
_J

— Low

Sleep

In-kernel run queue

«Run

Priority

94

-levation (Shared Pattern)

In-kernel run queue

— High «Run
Middle B
— Low

Sleep

95

Priority Elevation (Shared Pattern)

In-kernel run queue

. S A S jasnsssnssnsnununnnnnnnnuns > — High «Run

Middle

Priority
\

_ J

Sleep

96

Priority Elevation (Shared Pattern)

In-kernel run queue

Time
| A IIIIIIIIIIIIIIIIIIIIIIIIIII
> > > High «Run
N2
Enter the sleep state -§< Middle
: S 5

\ J
. . — Low
Sleep

Priority

The kernel-space process scheduler

picks up the

highest priority process ‘ B

-levation (Shared Pattern)

97

In-kernel run queue

« Run

Priority

Time
> High
Middle
— Low
Sleep

93

-levation (Shared Pattern)

In-kernel run queue

E«Run

| S

Priority

99

-levation (Shared Pattern)

Middle

— Low

Sleep

In-kernel run queue

E«Run

100

Priority Elevation (Shared Pattern)

In-kernel run queue

=
The timer expires and 5_ Middle
the scheduler process wakes up a

— Low

Sleep

101

Priority Elevation (Shared Pattern)

=
The timer expires and 5_ Middle
the scheduler process wakes up a

— Low

Sleep

102

Priority Elevation (Shared Pattern)

The kernel-space process scheduler

picks up the highest priority process Middle

— Low

Sleep

| S

103

Priority Elevation (Shared Pattern)

A

Middle

— Low

Sleep

In-kernel run queue

«Run

104

Priority Elevation (Shared Pattern)

.

S has been resumed to run

Time

> High
2

S~ Middle
am

— Low

Sleep

In-kernel run queue

«Run

Priority

105

-levation (Shared Pattern)

We can do the same for C ...

| S

A

S

B

In-kernel run queue

_«Run

Time
Siesssssnnnnnnnnns > High
Scheduling decision: —

\preempt B and run C

Middle

— Low

Sleep

106

Priority Elevation (Shared Pattern)

We can do the same for C ...

Time
| S A B Siesssssnnnnnnnnns > - High
— >
Elevate C’s priority to Middle 24 Middle
ol
N _/

— Low

Sleep

In-kernel run queue

«Run

60

107

Priority Elevation (Shared Pattern)

We can do the same for C ...
In-kernel run queue

ERMEIE"" i [

4)
Elevate C's priority to Middle

< orior - | Midd|eEZ¢
_ J

— Low

Sleep

Priority
\

Priority Elevation (Shar

We can do the same for C ...

s I < O -+~

-

Lower B's priority to Low

108

ed Pattern)

In-kernel run queue

Time

> High R

. g « un
.C<Lg< Middle

— Low

Sleep

109

Priority Elevation (Shared Pattern)

We can do the same for C ...

Time
| S JAY B S|asssnsnsnnnnnnns > High
I >,
4 =
Lower B’s priority to Low 24 Middle
ol
N\ _J

— Low

Sleep

In-kernel run queue

«Run

Priority Elevation (Shar

We can do the same for C ...

s I < O -+~

-

Enter the sleep state

110

ed Pattern)

In-kernel run queue

Time

> High «Run
=

2 Middle

— Low B

Sleep

Priority Elevation (Shar

We can do the same for C ...

111

ed Pattern)

In-kernel run queue

. Time
s A N B NTrmTTTTTTT > .
— High R
SIS MRS oeerees i [
4 N S
Enter the sleep state 24 Middle C
] : Ik C

— Low B
Sleep

Priority

112

-levation (Shared Pattern)

We can do the same for C ...

In-kernel run queue

Time
| S A B Siesssssnnnnnnnnns > ngh «Run
The kernel-space process scheduler E Ml ‘ a
picks up the highest priority process

— Low B
Sleep

113

Priority Elevation (Shared Pattern)

We can do the same for C ...

Time
| S A B Siesssssnnnnnnnnns > High

=
Execution is switched from S to C _§< Middle
0

In-kernel run queue

« Run
B
Sleep

— Low

114

Priority Elevation (Shared Pattern)

We can do the same for C ...
In-kernel run queue

C has been resumed to run Middle

« Run
B
Sleep

Priority
\

— Low

Priority Elevation (Shared Pattern)

We can do the same for C ...

The timer expires and
the scheduler process wakes up

Priority

Middle

— Low

Sleep

115

In-kernel run queue

Priority Elevation (Shared Pattern)

We can do the same for C ...

The timer expires and
the scheduler process wakes up

Priority

Middle

— Low

Sleep

116

117

Priority Elevation (Shared Pattern)

We can do the same for C ...

The kernel-space process scheduler

picks up the highest priority process Middle

— Low

Sleep

118

Priority Elevation (Shared Pattern)

We can do the same for C ...
In-kernel run queue

— High «Run
Middle
A8

— Low

Sleep

119

Priority Elevation (Shared Pattern)

We can do the same for C ...

B.p-0-8

S has been resumed to run

Time

> High
2

S~ Middle
am

— Low

Sleep

In-kernel run queue

«Run

A8

120

Priority Elevation (Shared Pattern)

B BB

Continue this loop

Time

> High
2

S~ Middle
am

— Low

Sleep

In-kernel run queue

«Run

080

121

Priority Elevation (Dedicated Pattern)

In-kernel run queue

... > High

>
S~ Middle
an

- [0

Sleep

122

Priority Elevation (Dedicated Pattern)

Time In-kernel run queue
.............................. e P Ore 2

— High

Middle

- [0

Sleep

The dedicated pattern involves
multiple CPU cores

Priority
\

123

Priority Elevation (Dedicated Pattern)

... >
In-k | eue

Time n-kernel run queu

... > _

— High || S
e [E
The basic behavior is the same S |
as the shared pattern 'D:_< Middle

- (006

Sleep

124

Priority Elevation (Dedicated Pattern)

... >
In-k |
Time n-kernel run queue
... > _
— High || S
e [E
The scheduler process can control S |
the process to be executed through 'D:_< Middle
the same priority elevation

- (D06

Sleep

125

Priority Elevation (Dedicated Pattern)

S lasssssssssssssssss >

Difference from the shared pattern:
the scheduler process does not need

to sleep to run a normal process

Prlorlty

— Middle

— Low

Sleep

In-kernel run queue

« Run(corel)

« Run(core2)

A8

126

L imitation (for both shared and dedicated patterns)

S lasssssssssssssssss >

In-kernel run queue

€ Run(corel)
€ Run(core2)
— Low B

Sleep

>
S~ Middle
am

127

L imitation (for both shared and dedicated patterns)

S lasssssssssssssssss >

In-kernel run queue

A i « Run(corel)

The scheduler process does not have
« Run(core2)

a way to effectively detect
B

Middle

Priority
\

a normal process’s sleep/wake up

— Low

Sleep

1238

L imitation (for both shared and dedicated patterns)

Enter the sleep state]
S IIIIIIIIIII IIII>

Time

> High «Run(corel)

In-kernel run queue

=
The scheduler process does not have = |
a way to effectively detect = Middle « Run(core2)
a normal process’s sleep/wake up 0-
- (00

Sleep

129

L imitation (for both shared and dedicated patterns)

S lassssapiass

The scheduler process does not have

a way to effectively detect
a normal process’s sleep/wake up

Priority

\

Enter the sleep state]
IIII>

Time

— High

Middle

— Low

Sleep

In-kernel run queue

« Run(corel)

« Run(core2)

130

L imitation (for both shared and dedicated patterns)

S lassssapiass

The scheduler process does not have

a way to effectively detect
a normal process’s sleep/wake up

Priority

\

Enter the sleep state]
IIII>

Time

— High

Middle

— Low

Sleep

In-kernel run queue

« Run(corel)

« Run(core2)

131

L imitation (for both shared and dedicated patterns)
A is resumed to run

In-kernel run queue

> High «Run(corel)

Middle

The scheduler process does not have
a way to effectively detect
a normal process’s sleep/wake up

Priority
\

— Low

Sleep

132

L imitation (for both shared and dedicated patterns)

S = |sssssssssssssas >

In-kernel run queue

A i € Run(corel)

The scheduler process does not have |
a way to effectively detect Middle

a normal process’s sleep/wake up :
.. , — Low E

[C wakes up
. B . normal process' Sleep

Priority
\

133

L imitation (for both shared and dedicated patterns)

S = |sssssssssssssas >

In-kernel run queue

Time
A i « Run(corel)
=
The scheduler process does not have = |
a way to effectively detect = Middle
a normal process’s sleep/wake up A :
— Low B
C wakes up

Sleep

134

L imitation (for both shared and dedicated patterns)

S = |sssssssssssssas >

In-kernel run queue

A i € Run(corel)

The scheduler process does not have
a way to effectively detect
a normal process’s sleep/wake up

Middle

- o [0

Sleep

Priority
\

1

135

L imitation (for both shared and dedicated patterns)
C is resumed to run

The scheduler process does not have

a way to effectively detect
a normal process’s sleep/wake up

Time

Priority

\

— High

Middle

— Low

Sleep

In-kernel run queue

« Run(corel)

« Run(core2)

A8

136

L imitation (for both shared and dedicated patterns)

It is hard for the scheduler process
to take this execution time
into account for scheduling

Priority

Middle

— Low

Sleep

In-kernel run queue

€ Run(corel)

€ Run(core2)

A8

137

L imitation (for both shared and dedicated patterns)

S hesssnnnnnnns >

In-kernel run queue

> High « Run(corel)
« Run(core2)
B

Limitation
The priority elevation trick is not
appropriate for scheduling processes
heawly relying on kernel event APls

Middle

Priority
\

— Low

Sleep

_imitation

Time
1 A B C /A |C TITIIIIITIT S High

Limitation
The priority elevation trick is not
appropriate for scheduling processes
heawly relying on kernel event APls

Priority

\

Middle

— Low

Sleep

138

Despite this limitation,
the priority elevation trick has use cases

In-kernel run queue

« Run(corel)

« Run(core2)

A8

139

-valuation

e How much are the overheads?

* Delay
« CPU overhead

« What are the use cases?
 Microsecond-scale time slicing
e Table-driven scheduling
 Preemptive scheduling

-valuation: Delay

Shared

Dedicated

140

Shared

-valuation: Delay

Dedicated

Normal process A and B
run a busy loop

141

Duration

142

_ . Normal process A and B
~valuation: Delay run a busy loop
O A busy loop
)
5 -1 S [3 A S L
T E : busy loop
|
Duration
= e Duration: time for which a process
[s ««p continues to run once it gets scheduled
S
ks >
a

143

_ . Normal process A and B
~valuation: Delay run a busy loop

Shared

Dedicated

: busy loop
b |
y y E usy loop

Duration Interval

e Duration: time for which a process
. S ««p continues to run once it gets scheduled

 Interval: time a descheduled process
- = S\ B N l..p waited until it gets scheduled again

| |
Duration Interval

-valuation: Delay

-
=
T
N
I |
Duration Interval
=
B S II>
MO
O
ks A B A M3
a

! !

Duration Interval

run a busy loop

Normal process A and B J

The scheduler process tries to
switch two processes
every b us

* Di
ofe

144

uled

NN e e e 5SS

waited until it gets scheduled again

-valuation: Delay

II>

II>

=
O
5 -5 [S RN S
N
Duratlon Interval
=
e S
MO
O
ks A B A
a
| |
Duration Interval

Entity
Process
Process
nthread
nthread
vCPU

vCPU

Pattern
Shared
Dedicated
Shared
Dedicated
Shared
Dedicated

145

Duration Interval

b.5 us
5.0 us
b.5 us
5.0 us
7.2 us
5.0 us

9.6 us
5.0 us
9.2 us
5.0 us
14.4 us
5.0 us

Duration

Interval

II>

>

=
O
N
| |
Duration Interval

=
e S
MO
O
a

| |

-valuation: Delay

In the shared cases,
delays are added

Pattern

146

Duration Interval

Process Shared b.bus 9.6 us
Process Dedicated 5.0us 5.0 us
[athread Shared b.bus 9.2 us]
othread Dedicated 5.0us 5.0 us
[VCPU Shared 7.2us 14.4 us]
vCPU Dedicated 5.0us 5.0 us

-valuation: Delay

147

In the shared cases,
delays are added

-
% Delays are coming from
S the scheduler process
. Pattern Duration Interval
Duration Interval
Process Shared h.5us 9.6 us

D g ..» Process Dedicated b.0us 5.0 us
S [athread Shared h.bus 9.2 us]
E A B = ==p pthread Dedicated Hh.0us 5.0 us

Y Y [VCPU Shared [.2us 14.4 us]

Duration Interval vCPU Dedicated 5.0 us 5.0 us

-valuation: Delay

1438

In the dedicated cases,
A and B are switched every b us

-
% > as intended

20 + 0 ¢ B

Dura’!ion IntYervaI Entity Pattern Duration Interval
Process Shared b.bus 9.6 us
E g . [Drocess Dedicated 5.0us 5.0 us]
S bthread Shared 5.5us 9.2 us
E ----> [othread Dedicated 5.0us 5.0 us]
Y Y vCPU Shared 7.2 us 14.4 us
Duration Interval vCPU Dedicated 5.0us 5.0 us

-valuation: Delay

149

In the dedicated cases,
A and B are switched every b us

-
= But, the dedicate case uses

(%5 > one additional CPU core

Dura’!ion IntYerva Eqtity Pattern Duration Interval
Process Shared b.bus 9.6 us
E [g]__> [Drocess Dedicated 5.0us 5.0 us]
S > bthread Shared 5.5us 9.2 us
E ----> [othread Dedicated 5.0us 5.0 us]
Y Y vCPU Shared 7.2 us 14.4 us
Duration Interval vCPU Dedicated 5.0us 5.0 us

Shared

-valuation: CPU Overheac

Dedicated

. sysbench (CPU)

B busy loop

150

151

-valuation: CPU Overheac

: sysbench (CPU)

Shared

Dedicated

E : busy loop

[_Bﬁa busy loop]

[A runs sysbench CPU bench

S “p

B A bl

>
E IIS A B A III>
O
N
0.5
D)
5 04
A
S
B S S E 0.3
S 2 02
S s
II> @) 01
& 2 o
0

152

-valuation: CPU Overheac

. sysbench (CPU)

E busy loop

%—

gmark score with

different switching periods

-®- Shared
-4~ Dedicated

0 20 40 60 &80 100 120 140 160

Period [us]

Shared

Dedicated

Switching period

S

B

A

II>

II>

Normalized Score

153

-valuation: CPU Overheac

. sysbench (CPU)

B busy loop

0.5 e ——
il
0.3
0.2
0.1 —®- Shared
0 —— Dedicated

0O 20 40 60 80 100 120 140 160
Period [us]

Shared

Dedicated

Normalized for the case where 05 S ——
A fully occupies a CPU core & 44 [//L
A
[S ..> é 03
= 02
:
B A 2 £ 0.1 -8~ Shared
—4- Dedicated

154

-valuation: CPU Overheac

. sysbench (CPU)

. A T S
S) -y oo

0O 20 40 60 80 100 120 140 160
Period [us]

Shared

Dedicated

0.5 is the best score because——0.5

A and B equally share the core &

S

B

A

II>

II>

Normalized Sco

0.4
0.3
0.2
0.1

0

155

-valuation: CPU Overheac

. sysbench (CPU)

B busy loop
-®- Shared

T
-4~ Dedicated

0O 20 40 60 80 100 120 140 160
Period [us]

156

-valuation: CPU Overheac

3 . sysbench (CPU)

5 -1 S [3 A S

T E busy loop

Gap to 0.5 shows the CPU overhead 0.5 ———
coming from the scheduling & 44 [//L

= A

B S S E 0.3

S 3 02

S z

O B A g > 0.1 -8~ Shared

O 0 —- Dedicated

0O 20 40 60 80 100 120 140 160
Period [us]

157

-valuation: CPU Overheac

3 . sysbench (CPU)

5 -1 S [3 A S

T E busy loop

Gap to 0.5 shows the CPU overhead 0.5 ———
coming from the scheduling & 44 [//L

= A

B S S g 0.3

S 3 02

S z

O B A g > 0.1 -8~ Shared

O 0 —- Dedicated

0 20 40 60 80 100 120 140 160
A shorter period leads to higher overhead Period [us]

1538

-valuation: CPU Overheac

Gap to 0.5 shows the CPU overhead 0.5
coming from the scheduling

. sysbench (CPU)

E busy loop

———————

[/h;;c:ated case exhibitg
lower overhead because of

——— the extra CPU core

-®- Shared
-4~ Dedicated

0 20 40 60 80 100 120 140 160
A shorter period leads to higher overhead Period [us]

Shared

w

S —

B A

v

| |
| | | |
Normalized Score
: : S O

Dedicated
—
-

0

159

Use Case: Microsecond-scale Time Slicing

* Previous work showed microsecond-scale time slicing
contributes to application performance

« vTurbo (USENIX ATC’13), micro-sliced cores (EuroSys’18)

160

Use Case: Microsecond-scale Time Slicing

* Previous work showed microsecond-scale time slicing
contributes to application performance

« vTurbo (USENIX ATC’13), micro-sliced cores (EuroSys’18)

« However, the minimum configurable time slice on Linux is
1 millisecond (ensured by the kernel build system)

161

Use Case: Microsecond-scale Time Slicing

* Previous work showed microsecond-scale time slicing
contributes to application performance

« vTurbo (USENIX ATC’13), micro-sliced cores (EuroSys’18)

« However, the minimum configurable time slice on Linux is
1 millisecond (ensured by the kernel build system)

« The priority elevation trick allows us to apply microsecond-
scale time slices on unmodified Linux

Here, we see how it affects networked server performance

162

Use Case: Microsecond-scale Time Slicing

« We implemented a networked server for the experiments

163

Use Case: Microsecond-scale Time Slicing

« We implemented a networked server for the experiments

User Space
)

164

Use Case: Microsecond-scale Time Slicing

« We implemented a networked server for the experiments

User Space
\

Packet /0 B DPDK

—

165

Use Case: Microsecond-scale Time Slicing

« We implemented a networked server for the experiments

TCP/IP Stack B iip (SIGCOMM CCR)

Packet I/O0 B DPDK

User Space
)

—

166

Use Case: Microsecond-scale Time Slicing

« We implemented a networked server for the experiments

—

[] : Simple HT TP server

TCP/IP Stack B iip (SIGCOMM CCR)

Packet I/O0 B DPDK

User Space
)

—

Use Case: Microsecond-scale Time Slicing

 The client machine runs wrk2 to send requests

Server machine

Packet 1/0

100 Gbps link

Client machine

E—
)

e

N

167

Use Case: Microsecond-scale Time Slicing

 The client machine runs wrk2 to send requests

Server machine

TCP/IP Stack

Packet 1/0

100 Gbps link

Client machine

E—
)

e

\

168

Shared

169

Use Case: Microsecond-scale Time Slicing
: networked server

TCP/IP Stack

A runs the networked server]

Packet |/O

Shared

170

Use Case: Microsecond-scale Time Slicing
: networked server

B runs a busy loop]

TCP/IP Stack

A runs the networked server]

Packet |/O

171

Use Case: Microsecond-scale Time Slicing

ks . networked server
E - S A . S A TEY 2
©
N E busy loop
— 350
= 300 i oo
9" 250 it
Performance of § 00 e
the networked server on A = 50 o ~EPe0006
with different time slices S 100 |GgPOSRT ~ 5us
S 50 < 50 us
N <K 150 us
>0

00 02 04 06 08 1.0 1.2

Throughput [million requests/sec]

172

Use Case: Microsecond-scale Time Slicing

ks . networked server
E - S A . S A TEY 2
% E busy loop
— 350
= 300 i SR
gzso T
3 200 ~ P00
KD 150 ’Ggﬁg
S 100 | CgPTEET —+ 5us
S 50 < 50 us
§ % 150 us

O—
00 02 04 06 08 10 1.2

Throughput [million requests/sec]

173

Use Case: Microsecond-scale Time Slicing

D . networked server
E [N | S A B A III>
% E busy loop
— 350
= 300 i SR
gzso G
3 200 ~ P00
KD 150 ’Ggﬁg
S 100 | GgPFFT —+ 5us
S 50 © 50 us
N % 150 us
<0

00 02 04 06 08 1.0 1.2

Throughput [million requests/sec]

Use Case: Microsecond-scale Time Slicing

S

=
K
op)

Shared

A shorter switching period

leads to lower latency

. networked server

174

A III>
E busy loop
— 350
2 300 Ao 3
g 50 G
= 00 zn-:-_-:::::)
L 50 -»555:
S 100N.GaPT —+ Sus
> < & 50 us
oy <K 150 us
<0
00 02 04 06 08 1.0

Throughput [million requests/sec]

1.2

175

Use Case: Microsecond-scale Time Slicing
: networked server

E : busy loop

5 g :H » 0

Shared

W W
S N
o O

A shorter switching period
leads to lower latency

\
N
-

A too short switching period
leads to low throughput

S W
-

)
-

99th %&:enoy [us]
—_— e\ DN
S
S

-

00 02 04 06 08 1.0 1.2

Throughput [million requests/sec]

176

Use Case: Microsecond-scale Time Slicing

Shared

- networked server

B : busy loop

A shorter switching period
leads to lower latency

A too short switching period
leads to low throughput P

because of the CPU overhead

1zed Score

rmali
: S\ |

No

0.5
0.4

-
W

)
o =

ﬁysbench

?‘—

-®- Shared
—4- Dedicated

0

20 40 60 &80 100 120 140 160

Period [us]

177

Use Case: Microsecond-scale Time Slicing

= . networked server
E N | S A . S A III>
T E busy loop
. . L = 330
Time slice setting is 2. 300 " 5
crucial for performance S 250 it
D)
3 200 za-:-_-:‘_-:::’
o 150 -==‘=
S 100407 —+ 5 us
= 50 - 50 us
N % 150 us
>0

00 02 04 06 08 1.0 1.2

Throughput [million requests/sec]

178

Use Case: Microsecond-scale Time Slicing

. networked server

E busy loop

<,
«

AV
\/\J

aVelata =)

-
PO
5%
OO
I —+ S5 us

© 50 us
% 150 us

-
\J

ks
E ma S A . S A III>
©
N
. . . — 330
Time slice setting is 3. 300
crucial for performance S 250
Q
5 200
. . . > 150
The priority elevation trick T 1001C
| allows us to a!oply N S 50
microsecond-scale time slicing & g
0.0

02 04 06 08 10 12

Throughput [million requests/sec]

179

Use Case: Table-driven Scheduling

* Previous work showed that table-driven scheduling adopting
static scheduling table improves application performance

e Tableau (EuroSys’18)

Use Case: Table-driven Scheduling

* Previous work showed that table-driven scheduling adopting
static scheduling table improves application performance

e Tableau (EuroSys’18)

« However, Linux does not provide a configuration interface
allowing users to install static scheduling tables

180

181

Use Case: Table-driven Scheduling

* Previous work showed that table-driven scheduling adopting
static scheduling table improves application performance

e Tableau (EuroSys’18)

« However, Linux does not provide a configuration interface
allowing users to install static scheduling tables

e The priority elevation trick allows us to realize table-driven
scheduling without changing the kernel

We see how it contributes to networked server performance

182

Use Case: Table-driven Scheduling

e Scenario: A, B, and C run on the same CPU core

Use Case: Table-driven Scheduling

e Scenario: A, B, and C run on the same CPU core
* A runs the networked server, and B and C run a busy loop

s c

Networked server Busy loop

183

Use Case: Table-driven Scheduling

-

Server machine

\

-
 Application -

Client machine \

-~
100 Gbps link

TCP/IP Stack

Packet 1/0

——

\

A A

Networked server

R
)
L

Busy loop

184

Use Case: Table-driven Scheduling

e Scenario: A, B, and C run on the same CPU core
* A runs the networked server, and B and C run a busy loop

« We assign 50% of CPU time to A and 25% to B and C each

50% 25% 25%

s c

Networked server Busy loop

185

Use Case: Table-driven Scheduling

« Two ordering patterns: A-A-B-C and A-B-A-C

A-A-B-C ==X A

A-B-A-C ==af A

The kernel-space process scheduler does not offer
an interface to specity the order of the scheduling

186

Use Case: Table-driven Scheduling

« Two ordering patterns: A-A-B-C and A-B-A-C

A-A-B-C ==X A

A-B-A-C ==af A

The priority elevation trick allows us to implement
scheduling tables to ensure these ordering patterns

187

188

Use Case: Table-driven Scheduling

Performance of the networked server on A

-
S

o W
)
-
>

!»

»>

<>

)>

D

N

7

99th %ile Latency [us]

00 02 04 06 08 1.0 12

Throughput [million requests/sec]

189

Use Case: Table-driven Scheduling

-
-]

N W
N
-
>

>

P

>

)

D

\§

”

99th %ile Latency [us]

00 02 04 06 08 1.0 12

Throughput [million requests/sec]

190

Use Case: Table-driven Scheduling

-
S

3
=9 ZEE,EEBEEEEHEE@

99th %ile Latency [us]

00 02 04 06 08 1.0 12

Throughput [million requests/sec]

191

Use Case: Table-driven Scheduling

6’-\-B-A-C is constantly better

— 30

)

> 290 ZHEEEEEEEEEEIEEH
§ 200 Iﬁgﬁz

av;

S 150

D)

< 100

= s = A-A-B-C
= A A-B-A-C
<0

00 02 04 06 08 1.0 12

Throughput [million requests/sec]

192

Use Case: Table-driven Scheduling

2l A A B C A Bg

60.-B-A-C is constantly better

0

— 3

=

5 2 ZEZEEEEHEEEEI@

o= AAAAAALN
8 N 5 v W

= AAA

—

B

T s B A-A-B-C
= A A-B-A-C
>0

00 02 04 06 08 1.0 12

Throughput [million requests/sec]

193

Use Case: Table-driven Scheduling

A request arrives when

d 4
B has been resumed
A-B-A-C is constantly better
Request & 300

7 =Y Zaaaasseaaaaa@

§ A AACA AL AN

< O

—

2

T s B A-A-B-C

S ; 4 A-B-A-C
Request 00 02 04 06 08 10 12

Throughput [million requests/sec]

194

Use Case: Table-driven Scheduling

B C A H g

Wait time A-B-A-C is constantly better

— 3
)
5 2 Zaaaaseeaaaaa@
(o) A A AL AAALN
8 N n N Ny Za—
< ey
—
o
Wait time 2, “4- A-B-A-C
Request 00 02 04 06 08 10 12

Throughput [million requests/sec]

195

Use Case: Table-driven Scheduling

A Hg The wait time for this request

is shorter in A-B-A-C

B

3

o

QL

<

—

L
” g Z 50 = A-A-B-C
Wait time 2, “4- A-B-A-C

Request 00 02 04 06 08 10 12

Throughput [million requests/sec]

196

Use Case: Table-driven Scheduling

The wait time for this request
Table-driven scheduling realized is shorter in A-B-A-C

by the priority elevation trick _
brings performance benefit (SO"B'A'C Is constantly better

0

— 3
=

5 20 ZHZEEEEEEEEEE@

c AAAAAAL
8 N : o

< ~el

—

o

S

= 0 £ A-A-B-C
= A A-B-A-C
>0

00 02 04 06 08 1.0 12

Throughput [million requests/sec]

197

Use Case: Preemptive Scheduling

* Previous work proposed to adopt preemptive scheduling to
mitigate the head-of-line blocking issue

« Shinjuku (NSDI'19)

198

Use Case: Preemptive Scheduling

* Previous work proposed to adopt preemptive scheduling to
mitigate the head-of-line blocking issue

« Shinjuku (NSDI'19)

« The original Shinjuku system is built as a specialized OS

Use Case: Preemptive Scheduling

* Previous work proposed to adopt preemptive scheduling to
mitigate the head-of-line blocking issue

+ Shinjuku (NSDI'19)
« The original Shinjuku system is built as a specialized OS

« The priority elevation trick allows us to implement
preemptive scheduling without changing the kernel

199

200

Use Case: Preemptive Scheduling

The head-of-line blocking issue

201

Use Case: Preemptive Scheduling

The head-of-line blocking issue

App
Request <

202

Use Case: Preemptive Scheduling

The head-of-line blocking issue

App
Request <

This request requires 0.5 us to generate a response

203

Use Case: Preemptive Scheduling

The head-of-line blocking issue

App
Request Q@ <

This request requires 500 us to generate a response

204

Use Case: Preemptive Scheduling

The head-of-line blocking issue

App
Request Q@ <

This request requires 0.5 us to generate a response

Use Case: Preemptive Scheduling

The head-of-line blocking issue

App
Request

O ¢

205

206

Use Case: Preemptive Scheduling

The head-of-line blocking issue

App
Request

207

Use Case: Preemptive Scheduling

The head-of-line blocking issue

The request is processed in 0.5 us

2038

Use Case: Preemptive Scheduling

The head-of-line blocking issue

0.5 us 500 us

App
Request Q <

The request is processed in 500 us

209

Use Case: Preemptive Scheduling

The head-of-line blocking issue

0.5 us 500 us 0.5 us
App
Request <

The request is processed in 0.5 us

210

Use Case: Preemptive Scheduling

The head-of-line blocking issue
500.5 us

"% This request had to wait for
0.5 us 500 us 05 us 500.5 us until it gets processed

App
Request <

Use Case: Preemptive Schedu

This rec

211

ng

uest largely delays

The head-of-line blocking issue t

ne response

to subsequent requests

"% This request had to wait for

0.5 us 500 us 05 us 500.5 us until it gets processed

App
Request

<

Use Case: Preemptive Schedu

This rec

212

ng

uest largely delays

The head-of-line blocking issue t

ne response

to subsequent requests

"% This request had to wait for

0.5 us 500 us 05 us 500.5 us until it gets processed

App
Request

<

Use Case: Preemptive Schedu

This rec

213

ng

uest largely delays

The head-of-line blocking issue t

ne response

to subsequent requests

"% This request had to wait for

0.5 us 500 us 05 us 500.5 us until it gets processed

App
Request

<

The Shinjuku (NSDI'19) work proposes to adopt

preemptive scheduling to mitigate head-of-line blocking

214

Use Case: Preemptive Scheduling

Preemptive scheduling

App
Request

215

Use Case: Preemptive Scheduling

Preemptive scheduling

The request is processed in 0.5 us

216

Use Case: Preemptive Scheduling

Preemptive scheduling

App
Request Q <

The next request is now processed ...

217

Use Case: Preemptive Scheduling

Preemptive scheduling

0.5 us threshold

App
Request Q <

The request processing has not been finished
within a preconfigured threshold

218

Use Case: Preemptive Scheduling

Preemptive scheduling

0.5 us threshold

App
Request Q <

The preemptive scheduling policy preempts the currently running worker
and runs another worker to process the subsequent request

219

Use Case: Preemptive Scheduling

Preemptive scheduling

0.5 us threshold 0.5 us

App
Request <

The request is processed in 0.5 us

220

Use Case: Preemptive Scheduling

Preemptive scheduling

0.5 us threshold 0.5 us
App
Request <

Then, the preempted worker is resumed

221

Use Case: Preemptive Scheduling

This request had to wait for

Preemptive scheduling 0.5 us + threshold

0.5 us + threshold

0.5 us threshold 0.5 us

App
Request <

Then, the preempted worker is resumed

222

Use Case: Preemptive Scheduling

This request had to wait for

Preemptive scheduling 0.5 us + threshold

<
» Head-of-line blocking
0.5 us threshold 0.5 us IS mitigated
App
Request <

Then, the preempted worker is resumed

223

Use Case: Preemptive Scheduling

This request had to wait for
0.5 us + threshold

et

Preemptive scheduling

» Head-of-line blocking
0.5 us threshold 0.5 us is mitigated
App
Request <

Then, the preempted worker is resumed

We implement an equivalent mechanism with the priority elevation trick

224

Use Case: Preemptive Scheduling

« Pthread types

225

Use Case: Preemptive Scheduling

« Pthread types
A worker pthreads handle application-level requests

226

Use Case: Preemptive Scheduling

« Pthread types
A worker pthreads handle application-level requests
« A dispatcher pthread

« extracts application-level requests by performing TCP/IP processing for
incoming packets

e dispatches the requests to worker pthreads

221

Use Case: Preemptive Scheduling

« Pthread types
A worker pthreads handle application-level requests
« A dispatcher pthread

« extracts application-level requests by performing TCP/IP processing for
incoming packets

e dispatches the requests to worker pthreads

* A switcher pthread preempts a worker pthread that continuously
runs longer than a preconfigured threshold

. : switcher @ : dispatcher
B : worker

228

Use Case: Preemptive Scheduling

In-kernel run queue

* Priority values 4
o 4:
e 3:
¢ 2: 3
o 1:

(a higher value represents a higher priority) 2

229

Use Case: Preemptive Scheduling

In-kernel run queue

* Priority values 4

e 4: the switcher
o 3:
¢ 2:
e 1:

(a higher value represents a higher priority) 2

230

Use Case: Preemptive Scheduling

In-kernel run queue

* Priority values 4

« 4: the switcher

« 3: a worker allowed by the dispatcher to run 3
o 2:

o 1:

(a higher value represents a higher priority) 2

231

Use Case: Preemptive Scheduling

In-kernel run queue

* Priority values 4

e 4: the switcher

« 3: a worker allowed by the dispatcher to run
« 2: the dispatcher

o 1:

(a higher value represents a higher priority) 2 @

3

Sleep

232

Use Case: Preemptive Scheduling

In-kernel run queue
* Priority values 4 .

« 4: the switcher

« 3: a worker allowed by the dispatcher to run 3
« 2: the dispatcher

« 1: workers that are not allowed to run

(a higher value represents a higher priority) 2 @

-- D08

Sleep

233

Use Case: Preemptive Scheduling

In-kernel run queue

| .

Priority
\

2 | (0]

. : switcher @ : dispatcheri . B .

234

Use Case: Preemptive Scheduling

In-kernel run queue

The kernel-space process scheduler
picks up the highest priority process

-1 1880

235

Use Case: Preemptive Scheduling

In-kernel run queue

— 4 .«Run

S has been started to run

Priority
\

2 | (0]

. : switcher @ : dispatcheri . B .

236

Use Case: Preemptive Scheduling

Enter the sleep state by calling
read(timerfd)

~

—4

\

In-kernel run queue

.«Run

8

080

231

Use Case: Preemptive Scheduling

Enter the sleep state by calling
read(timerfd)

~

—4

\

In-kernel run queue

« Run

233

Use Case: Preemptive Scheduling

Enter the sleep state by calling
read(timerfd)

~

—4

\

In-kernel run queue

« Run

239

Use Case: Preemptive Scheduling

In-kernel run queue

—4 «Run

The kernel-space process scheduler A 2 ‘ @
picks up the highest priority process

240

Use Case: Preemptive Scheduling

In-kernel run queue

—4
Time
.................................... > > 3
Execution is switched from S to D §< 5 @ « Run
e L1 (D0
. . switcher @ ; dispatcheri

241

Use Case: Preemptive Scheduling

In-kernel run queue

—4

D has been started to run

| O |
\ =
3
Priority @
\
@V)

2 @«Run
Alele

R — 1

. > switcher @ : dispatcher !

242

Use Case: Preemptive Scheduling

In-kernel run queue

—4

Priority
\

D handles incoming packets and
dispatch requests to a worker 2 @ « Run

080
S

243

Use Case: Preemptive Scheduling

In-kernel run queue

— 4

Time
] — Ly
e -
Scheduling decision: m_\l;D
RunAforapplication—levelj‘ z ‘ D «Run

request handling
Ale]e

-
— 1

| Sleep

244

Use Case: Preemptive Scheduling

\

—4

In-kernel run queue

245

Use Case: Preemptive Scheduling

In-kernel run queue

—4

\

246

Use Case: Preemptive Scheduling

In-kernel run queue

The kernel-space process scheduler
picks up the highest priority process

247

Use Case: Preemptive Scheduling

In-kernel run queue

— 4
Time
[0 -rereeessesseessmmssssssenene S -
S —
Execution is switched from D to A i
2 |[D]
B - (@8

. > switcher @ : dispatcher !

248

Use Case: Preemptive Scheduling

In-kernel run queue

— 4
Time
> | 3 « Run
A has been started to run §< 5 @
. : switcher @ : dispatcheri B .
| . | S

249

Use Case: Preemptive Scheduling

In-kernel run queue

—4

«Run

Priority
\

Set the timerfd that is 5 @
blocking the switcher pthread

-1 180

timer /| \
SleeQ}.

250

Use Case: Preemptive Scheduling

In-kernel run queue

— 4
Time
>3 « Run
Lo
Handle an application-level request A 2 @
N _/
e e — 1 B

Slee

. : switcher @ : dispatcheri timer ;{\

251

Use Case: Preemptive Scheduling

In-kernel run queue

The timer expires — 4
Time
llllllllllllllllllllll > b 3 « Run
N 8-
Handle an application-level request 0 2 @
J

-L 808

(0=

252

Use Case: Preemptive Scheduling

In-kernel run queue

The switcher pthread wakes up

— 4
Time
> 3 «Run
S —
| 2
-
Sleep

253

Use Case: Preemptive Scheduling

In-kernel run queue

The switcher pthread wakes up

— 4
Time
> 3 «Run
S —
| 2
-
Sleep

254

Use Case: Preemptive Scheduling

In-kernel run queue

The switcher pthread wakes up

The kernel-space process scheduler
picks up the highest priority process

255

Use Case: Preemptive Scheduling

In-kernel run queue

— 4 .«Run
;
2 |[D]

Execution is switched from Ato S

Priority
\

. : switcher @ : dispatcheri B .

256

Use Case: Preemptive Scheduling

In-kernel run queue

— 4 .«Run
;
2 |[D]

S has been resumed to run

Priority
\

. : switcher @ : dispatcheri E .

257

Use Case: Preemptive Scheduling

Lower A’s priority to 1

r ——

. > switcher @ : dispatcher !

—4

\

In-kernel run queue

.«Run

8

80

2538

Use Case: Preemptive Scheduling

In-kernel run queue

— 4 .«Run

Priority
\

2 | (0]

Lower A’s priority to 1

. : switcher @ : dispatcheri E .

259

Use Case: Preemptive Scheduling

In-kernel run queue

— 4 « Run

> 3

S =

Enter the sleep state by calling a | 9
read(timerfd)
N _/

— 1
Sleep

260

Use Case: Preemptive Scheduling

In-kernel run queue

—4 «Run

> | 3
o=
Enter the sleep state by calling a | 9
read(timerfd)
N\ _J
— 1

2601

Use Case: Preemptive Scheduling

In-kernel run queue

—4 «Run

The kernel-space process scheduler A 2 ‘ @
picks up the highest priority process

262

Use Case: Preemptive Scheduling

In-kernel run queue

—4
Time
> | 3
Execution is switched from S to D §< 5 @ « Run
. : switcher @ : dispatcheri E . .
i . i S|

263

Use Case: Preemptive Scheduling

In-kernel run queue

—4
Time
o = - |
D has been started to run §< 5 @ « Run
. : switcher @ : dispatcheri E . .
i . i S|

264

Use Case: Preemptive Scheduling

In-kernel run queue

—4

D|ssssssansnannnnns > ;

P
Scheduling decision: \¢2:l‘f§47i:J
Run B for application—levelj‘ z ‘

request handling

| Sleep

265

Use Case: Preemptive Scheduling

\

—4

In-kernel run queue

266

Use Case: Preemptive Scheduling

In-kernel run queue

—4

\

267

Use Case: Preemptive Scheduling

In-kernel run queue

D|ssssssansnannnnns

E A

The kernel-space process scheduler
picks up the highest priority process

263

Use Case: Preemptive Scheduling

In-kernel run queue

— 4
Time
o = I > | [R
Execution is switched from D to B §< 5 @
. : switcher @ : dispatcheri . .
i . i S

269

Use Case: Preemptive Scheduling

In-kernel run queue

—4
Time
2| 3 B « Run
B has been resumed to run g:_)< 5 @
. : switcher @ : dispatcheri . .
i . i S

270

Use Case: Preemptive Scheduling

In-kernel run queue

—4

B«Run

Set the timerfd that is 5 @
blocking the switcher pthread

-

timer /| \
SleeQ}.

Priority
\

211

Use Case: Preemptive Scheduling

-

\

Handle an application-level request

J

r ——

. > switcher @ : dispatcher !

Priority

—4

\

— 1]
timer

Slee

In-kernel run queue

B«Run

8

8

212

Use Case: Preemptive Scheduling

-

Request handling has been done

r ——

. > switcher @ : dispatcher !

Priority

—4

\

— 1]
timer

Slee

In-kernel run queue

E«Run

8

8

213

Use Case: Preemptive Scheduling

In-kernel run queue

—4

B«Run

Cancel the timerfd that is 5 @
blocking the switcher pthread

Priority
\

274

Use Case: Preemptive Scheduling

In-kernel run queue

— 4
Time
> | 3 « Run
Lo
Lower B's priority to 1 a3 2
\ J
. : switcher @ : dispatcheri
: Sleep

215

Use Case: Preemptive Scheduling

In-kernel run queue

— 4
> | 3 « Run
Lo
Lower B's priority to 1 a3 2
\ J
r___-_-_-_-_-_-_-________________------_-_-_-_-_-i - 1
. : switcher @ : dispatcheri
: Sleep

216

Use Case: Preemptive Scheduling

In-kernel run queue

—4

2| 3 « Run
S

The kernel-space process scheduler =

picks up the highest priority process ; | [:]

5

217

Use Case: Preemptive Scheduling

In-kernel run queue

— 4
Time
2 3
Execution is switched from B to D §< 5 @ « Run
. : switcher @ : dispatcheri . . E
i . i S|

2138

Use Case: Preemptive Scheduling

In-kernel run queue

— 4

. S
D has been resumed to run §< 5 @ « Run
T - (000

. > switcher @ : dispatcher !

219

Use Case: Preemptive Scheduling

In-kernel run queue

{51~ IR o)

/

Scheduling decision:
Resume A for handling
the pending request

230

Use Case: Preemptive Scheduling

In-kernel run queue

— 4
DB DB - D Sy
g | E— 5 -
bIociier;[gJ[TFe]ethV\/ei?::dh;?aptt;]Sread - 2 @ « Run
\r --- ~1 B

Slee

. - switcher @ : dispatcheri T 3:\

231

Use Case: Preemptive Scheduling

In-kernel run queue
Time
: E A E S D lennnnnnns >
.) 8
o

Elevate A's priority to 3

\

r ——

. > switcher @ : dispatcher !

282

Use Case: Preemptive Scheduling

In-kernel run queue
Time
: E A E S D lennnnnnns >
.) 8
o

Elevate A's priority to 3

\

r ——

. > switcher @ : dispatcher !

283

Use Case: Preemptive Scheduling

In-kernel run queue

{51~ ISR o >

The kernel-space process scheduler
picks up the highest priority process

234

Use Case: Preemptive Scheduling

In-kernel run queue

—4
Time
E- SRR . | » [@R
Execution is switched from D to A g:_)< 5 @
sy —1 E

Slee

. : switcher @ : dispatcheri timer;l:\

285

Use Case: Preemptive Scheduling

In-kernel run queue

—4
Time
E o > 3 « Run
A has been resumed to run §< 5 @
e — -1 B

Slee

. : switcher @ : dispatcheri timer;l:\

236

Use Case: Preemptive Scheduling

In-kernel run queue

— 4
Time
E A 2 3 « Run
5—<
Resume the suspended o 5 @
application-level request handling
\ J
-1 | @8

timer /| \
SleeQ}.

281

Use Case: Preemptive Scheduling

E A

-

Request handling has been done

r ——

. > switcher @ : dispatcher !

Priority

—4

\

— 1]
timer

Slee

In-kernel run queue

«Run
0
c]s

8

233

Use Case: Preemptive Scheduling

In-kernel run queue

— 4
E A > | 3 « Run
§_<
Cancel the timerfd that is a | 9 @
blocking the switcher pthread
\
S - (08

. > switcher @ : dispatcher !

239

Use Case: Preemptive Scheduling

E A

Lower A’s priority to 1

r ——

. > switcher @ : dispatcher !

\

—4

In-kernel run queue

« Run

290

Use Case: Preemptive Scheduling

In-kernel run queue

— 4
E A > 3 «Run
S —
Lower A's priority to 1 A 2 @
N\ _/
I -1 B

. . switcher @ : dispatcher !

291

Use Case: Preemptive Scheduling

In-kernel run queue

—4

E A > | 3 « Run
S

The kernel-space process scheduler =

picks up the highest priority process ; | [:]

5

292

Use Case: Preemptive Scheduling

In-kernel run queue

—4

Time

v
%

B - DR D B D |-
s e > D) 4o
000

Priority
\

R — 1

. > switcher @ : dispatcher !

Use Case: Preemptive Scheduling

 The client machine runs wrk2 to send requests

Server machine

Packet 1/0

100 Gbps link

Client machine

E—
)

e

N

293

Use Case: Preemptive Scheduling

 The client machine runs wrk2 to send requests

Server machine

Preem

ntive scheduling extension

Packet 1/0

100 Gbps link

Client machine

E—
)

e

N

294

295

Use Case: Preemptive Scheduling

-4 w/0 preemption
- w/ preemption

3 800

> 700 A/A—A/k“
2 600

2 500

3 400

: 3

S

= 100

> 0

@)

0.0 0.1 0.2 0.3 0.4 0.5

Throughput [million requests/sec]

296

Use Case: Preemptive Scheduling

99.5% requests require 0.5 us
0.5% requests require 500 us

-4 w/0 preemption
- w/ preemption

3 800

> 700 A/A—A/k“
2 600

2 500

3 400

: 3

S

= 100

> 0

@)

0.0 0.1 0.2 0.3 0.4 0.5

Throughput [million requests/sec]

297

Use Case: Preemptive Scheduling

99.5% requests require 0.5 us
0.5% requests require 500 us

-4 w/0 preemption
- w/ preemption

3 800

> 700 A/A—A/k“
2 600

2 500

3 400

: 3

S

= 100

> 0

@)

0.0 0.1 0.2 0.3 0.4 0.5

Throughput [million requests/sec]

293

Use Case: Preemptive Scheduling

99.5% requests require 0.5 us
0.5% requests require 500 us

-4 w/0 preemption
- w/ preemption

00 4
00 /A—k"“
300 A/A/A’A/A—A/WA

100
0

0.0 0.1 0.2 0.3 0.4 0.5

Throughput [million requests/sec]

QNI 0
-
-

99th %ile Latency [us]
L) B W
SO
SSS

Use Case: Preemptive Scheduling

When preemptive scheduling is

not activated, the latency goes
higher than 500 us

99.5% requests require 0.5 us
0.5% requests require 500 us

[117

-4 w/0 preemption
- w/ preemption

299

800
700
600
500
400
300
200
100

M

0
0.0

99th %ile Latency

0.1 0.2 0.3 0.4

Throughput [million requests/sec]

0.5

300

Use Case: Preemptive Scheduling

99.5% requests require 0.5 us

When preemptive scheduling is 0.5% requests require 500 us
activated, the latency goes A& w/o preemption
lower than 500 us \ 4w/ preemption
=
%
<
|3
<
)
:
S
= 100
> 0
@)

0.0 0.1 0.2 0.3 0.4 0.5

Throughput [million requests/sec]

301

Use Case: Preemptive Scheduling

99.5% requests require 0.5 us

Preemptive scheduling realized 0.5% requests require 500 us
by the priority elevation trick
Y P y .. -4 w/0 preemption
successfully mitigated the _ A w/ preemption
head-of-line blocking issue = 800
>, 700 /A—kk“
2 600
g 500
= 400
2
> 100
S 0
@)

0.0 0.1 0.2 0.3 0.4 0.5

Throughput [million requests/sec]

302

Summary

* The priority elevation trick allows us to control scheduling
to some extent while only using common OS features

 We think that this trick is sufficient for many use cases

 We hope this work contributes to researchers and developers who
wish to have a quick and easy utility for scheduler development

Supplemental Materials
{ https://github.com/yasukata/priority-elevation-trick }

https://github.com/yasukata/priority-elevation-trick

