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TCP/IP and TCP/IP Stacks
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TCP/IP and TCP/IP Stacks
• TCP/IP is a standardized protocol suite commonly used for 

communication in computer networks
• TCP/IP stacks are typically software that implements 

procedures to comply with the TCP/IP standard
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TCP/IP Stacks in Legacy OS Kernels
• TCP/IP stacks are typically maintained as part of OS kernels
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TCP/IP Stacks in Legacy OS Kernels
• TCP/IP stacks are typically maintained as part of OS kernels
• People found it is hard for TCP/IP stacks in legacy OS 

kernels to effectively utilize the benefits of high-speed NICs
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Performance-optimized TCP/IP Stacks
• To address this issue, research and industry communities 

have invented many performance-optimized TCP/IP stacks
• e.g., Sandstorm (SIGCOMMʼ14), mTCP (NSDIʼ14)
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Performance-optimized TCP/IP Stacks
Their performance is excellent

e.g., Sandstorm (SIGCOMMʼ14), mTCP (NSDIʼ14)😄

https://github.com/yasukata/iip 8



Performance-optimized TCP/IP Stacks
Their performance is excellent

e.g., Sandstorm (SIGCOMMʼ14), mTCP (NSDIʼ14)

They often incur high integration complexity

😄

😢
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Portability-aware TCP/IP Stacks
There are TCP/IP stacks that allow for easy integration

e.g., lwIP, FNET, picoTCP😄
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Portability-aware TCP/IP Stacks
There are TCP/IP stacks that allow for easy integration

e.g., lwIP, FNET, picoTCP

They often lack the care for performance-critical factors

😄

😢
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Problem
• None of previous TCP/IP stack implementations allow for 

easy integration and good performance simultaneously
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Problem
• As a result, developers only had limited and laborious options
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Problem
• As a result, developers only had limited and laborious options
• intensively modifying one of the existing TCP/IP stacks
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Problem
• As a result, developers only had limited and laborious options
• intensively modifying one of the existing TCP/IP stacks
• building a new TCP/IP stack from scratch
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Problem
• As a result, developers only had limited and laborious options
• intensively modifying one of the existing TCP/IP stacks
• building a new TCP/IP stack from scratch
• accepting performance limitations of an applicable TCP/IP stack
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Problem
• As a result, developers only had limited and laborious options
• intensively modifying one of the existing TCP/IP stacks
• building a new TCP/IP stack from scratch
• accepting performance limitations of an applicable TCP/IP stack
• giving up the integration
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This Work
• We develop iip, an integratable TCP/IP stack, that allows for 

easy integration and good performance simultaneously

Category Performance Integration
Performance-optimized

Portability-aware
This work

✔
✔

✔ ✔
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Issues of Existing TCP/IP Stacks
• Performance-optimized TCP/IP stacks
• Dependencies on other components
• Functionality conflicts
• Limited choices for CPU core assignment models

• Portability-aware TCP/IP stacks
• Unaware of NIC offloading features 
• Lack of zero-copy I/O capability
• Lack of multi-core scalability
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A thread executing
application logic
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(application developers)
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TCP/IP stacks usually maintain

limited functionalities
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A thread executing
TCP/IP processing

I/O
subsystem

Thread
runtime

Thread
scheduler

Provided by TCP/IP stack users
(developers)

Developers are assumed to provide
platform-dependent components

This design mitigates
the integration complexity
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Portability-aware
TCP/IP stack

TCP/IP 
processing

A thread executing
TCP/IP processing

I/O
subsystem

Thread
runtime

Thread
scheduler

Provided by TCP/IP stack users
(developers)

Not sufficiently aware of performance-critical factors

• Unaware of NIC offloading features
• Lack of zero-copy I/O capability
• Lack of multi-core scalability

Portability-aware TCP/IP stacks cannot achieve
good performance in various workloads
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iip only implements the TCP/IP processing functionality
to minimize the chance for causing functionality conflicts
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performance-critical factors
• uses NIC offloading features
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TCP/IP 
processing

A thread executing
TCP/IP processing

I/O
subsystem

Thread
runtime

Thread
scheduler

Provided by TCP/IP stack users
(developers)iip

iip only implements the TCP/IP processing functionality
to minimize the chance for causing functionality conflicts

API

Platform-dependent functionalities are assumed
to be provided by developers through the API

No dependency on CPUs, NICs,
OSes, libraries, and compilers

C89 / C++98 compliant
for old and future compilers

iip pays attention to
performance-critical factors
• uses NIC offloading features
• supports zero-copy I/O
• aware of multi-core scalability
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ns-3

iip

A thread executing
TCP/IP processing

I/O
subsystem

Thread
runtime

Thread
scheduler

These functionalities are
specific to ns-3

These functionalities makes it hard
for TCP/IP stacks depending on

common OS features to run on ns-3iip can be easily integrated into ns-3 because
it does not depend on platform-specific functionalities

https://github.com/yasukata/iip-ns


Integratability Benefits
• iip runs on various I/O backends, including but not limited to:
• DPDK (Linux): https://github.com/yasukata/iip-dpdk
• AF_XDP (Linux): https://github.com/yasukata/iip-af_xdp
• netmap (Linux/FreeBSD): https://github.com/yasukata/iip-netmap
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iip

I/O
subsystem

iip does not depend on
specific I/O subsystems

https://github.com/yasukata/iip-dpdk
https://github.com/yasukata/iip-af_xdp
https://github.com/yasukata/iip-netmap
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100 Gbpsiip

pinger
app

32 CPU
cores

DPDK
iip

ponger
app

1~32 CPU
cores

DPDK

The pinger and ponger exchange
1-byte TCP payloads

We have tested while changing
the number of CPU cores

on the ponger side

A ponger thread handles
32 concurrent TCP connections

• These two perform ping-pong with
1-byte TCP payloads
• Pinger always uses 32 CPU cores
• Ponger uses 1 ~ 32 CPU cores
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All NIC offloading features and
zero-copy transmission are activated
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pongerʼs

• Performance factors
• Multi-core scalability
• Checksum offloading

When NIC checksum offloading is
deactivated, throughput is degraded
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pongerʼs

• Performance factors
• Multi-core scalability
• Checksum offloading

When zero-copy transmission is
deactivated, throughput is increased



Evaluation: Small Message Exchange
• The pinger and ponger apps exchange 1-byte TCP payloads

https://github.com/yasukata/iip 104

pongerʼs

• Performance factors
• Multi-core scalability
• Checksum offloading

• Tips
• For small messages,

copy is faster than
zero-copy transmission
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100 Gbpsiip

pinger
app

32 CPU
cores

DPDK
iip

ponger
app

2 CPU
cores

DPDK

The pinger and ponger exchange
1-byte TCP payloads

We applied the three models
on the ponger side

• Mostly same as the previous experiment
• Ponger adopts Split, Merge, Unified 

models using 2 CPU cores
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The latency gap comes from the app/net
transition cost of the merge model
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The merge model exhibits higher throughput
than the split model because of CPU utilization
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The unified model achieves the best speed
because it is free from the issues of the others
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The sender sends the same data
to the receiver repeatedly

100 Gbpsiip

sender
app

1 CPU
cores

DPDK
iip

receiver
app

1 CPU
core

DPDK

These two communicate
over 1 TCP connection

Each uses 1 CPU core

• The sender sends the same data to 
the receiver over 1 TCP connection
• Each uses 1 CPU core
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All NIC offloading features and
zero-copy transmission are activated
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• Performance factors
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When the sender deactivates
zero-copy transmission,
throughput is degraded
according to the size of the data
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• Performance factors
• Zero-copy transmission

When the sender deactivates
zero-copy transmission,
throughput is degraded
according to the size of the data

We consider this happens because
the payload occupies the CPU cache
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• Performance factors
• Zero-copy transmission
• TSO

When the sender deactivates TSO,
throughput is almost halved



Evaluation: Bulk Data Transfer
• The sender repeatedly sends the same data to the receiver

https://github.com/yasukata/iip 124

• Performance factors
• Zero-copy transmission
• TSO
• Checksum offloading

When the sender deactivates
TSO and checksum offloading,
throughput goes down to around 10%
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• Performance factors
• Zero-copy transmission
• TSO
• Checksum offloading

When the receiver deactivates
checksum offloading,
throughput goes down to around 10%
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• Performance factors
• Zero-copy transmission
• TSO
• Checksum offloading

When the receiver disables LRO,
it can still catch up with the link speed
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• Performance factors
• Zero-copy transmission
• TSO
• Checksum offloading

• Note
• This does not mean

LRO is not necessary
• Just we did not see 

differences in this workload



Summary
• iip is a TCP/IP stack implementation that aims to allow for 

easy integration and good performance simultaneously

• Main page: https://github.com/yasukata/iip
• Assets used in the paper: https://github.com/yasukata/bench-

iip/tree/9cf2488ec93ae51f4bd7b18923a5d1a233852f66
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Please try it if you are interested

https://github.com/yasukata/iip
https://github.com/yasukata/bench-iip/tree/9cf2488ec93ae51f4bd7b18923a5d1a233852f66
https://github.com/yasukata/bench-iip/tree/9cf2488ec93ae51f4bd7b18923a5d1a233852f66

