
iip: an integratable TCP/IP stack
Kenichi Yasukata

SIGCOMM 2024 ‒ Best of CCR session ‒ Sydney, Australia ‒ 6th August 2024



TCP/IP and TCP/IP Stacks
• TCP/IP is a standardized protocol suite commonly used for 

communication in computer networks

https://github.com/yasukata/iip 2

TCP/IP

Computer Computer



TCP/IP and TCP/IP Stacks
• TCP/IP is a standardized protocol suite commonly used for 

communication in computer networks
• TCP/IP stacks are typically software that implements 

procedures to comply with the TCP/IP standard

https://github.com/yasukata/iip 3

TCP/IP

Computer Computer

TCP/IP Stack TCP/IP Stack



TCP/IP Stacks in Legacy OS Kernels
• TCP/IP stacks are typically maintained as part of OS kernels

https://github.com/yasukata/iip 4

Computer

TCP/IP Stack



TCP/IP Stacks in Legacy OS Kernels
• TCP/IP stacks are typically maintained as part of OS kernels

https://github.com/yasukata/iip 5

Computer

TCP/IP Stack
OS kernel



TCP/IP Stacks in Legacy OS Kernels
• TCP/IP stacks are typically maintained as part of OS kernels
• People found it is hard for TCP/IP stacks in legacy OS 

kernels to effectively utilize the benefits of high-speed NICs

https://github.com/yasukata/iip 6

Computer

TCP/IP Stack
OS kernel

🧐

Although NICs are very fast,
performance is limited

hmmm...



Performance-optimized TCP/IP Stacks
• To address this issue, research and industry communities 

have invented many performance-optimized TCP/IP stacks
• e.g., Sandstorm (SIGCOMMʼ14), mTCP (NSDIʼ14)

https://github.com/yasukata/iip 7😄

Power of NICs is unleashed
by fast TCP/IP stacks!

Computer

Performance-
optimized

TCP/IP Stack



Performance-optimized TCP/IP Stacks
Their performance is excellent

e.g., Sandstorm (SIGCOMMʼ14), mTCP (NSDIʼ14)😄

https://github.com/yasukata/iip 8



Performance-optimized TCP/IP Stacks
Their performance is excellent

e.g., Sandstorm (SIGCOMMʼ14), mTCP (NSDIʼ14)

They often incur high integration complexity

😄

😢

https://github.com/yasukata/iip 9

Category Performance Integration
Performance-optimized ✔



Portability-aware TCP/IP Stacks
There are TCP/IP stacks that allow for easy integration

e.g., lwIP, FNET, picoTCP😄

https://github.com/yasukata/iip 10

Category Performance Integration
Performance-optimized

Portability-aware
✔

✔



Portability-aware TCP/IP Stacks
There are TCP/IP stacks that allow for easy integration

e.g., lwIP, FNET, picoTCP

They often lack the care for performance-critical factors

😄

😢

https://github.com/yasukata/iip 11

Category Performance Integration
Performance-optimized

Portability-aware
✔

✔



Problem
• None of previous TCP/IP stack implementations allow for 

easy integration and good performance simultaneously

https://github.com/yasukata/iip 12

Category Performance Integration
Performance-optimized

Portability-aware
✔

✔



Problem
• As a result, developers only had limited and laborious options

https://github.com/yasukata/iip 13

Category Performance Integration
Performance-optimized

Portability-aware
✔

✔



Problem
• As a result, developers only had limited and laborious options
• intensively modifying one of the existing TCP/IP stacks

https://github.com/yasukata/iip 14

Category Performance Integration
Performance-optimized

Portability-aware
✔

✔



Problem
• As a result, developers only had limited and laborious options
• intensively modifying one of the existing TCP/IP stacks
• building a new TCP/IP stack from scratch

https://github.com/yasukata/iip 15

Category Performance Integration
Performance-optimized

Portability-aware
✔

✔



Problem
• As a result, developers only had limited and laborious options
• intensively modifying one of the existing TCP/IP stacks
• building a new TCP/IP stack from scratch
• accepting performance limitations of an applicable TCP/IP stack

https://github.com/yasukata/iip 16

Category Performance Integration
Performance-optimized

Portability-aware
✔

✔



Problem
• As a result, developers only had limited and laborious options
• intensively modifying one of the existing TCP/IP stacks
• building a new TCP/IP stack from scratch
• accepting performance limitations of an applicable TCP/IP stack
• giving up the integration

https://github.com/yasukata/iip 17

Category Performance Integration
Performance-optimized

Portability-aware
✔

✔



This Work
• We develop iip, an integratable TCP/IP stack, that allows for 

easy integration and good performance simultaneously

Category Performance Integration
Performance-optimized

Portability-aware
This work

✔
✔

✔ ✔
https://github.com/yasukata/iip 18



Issues of Existing TCP/IP Stacks
• Performance-optimized TCP/IP stacks
• Dependencies on other components
• Functionality conflicts
• Limited choices for CPU core assignment models

• Portability-aware TCP/IP stacks
• Unaware of NIC offloading features 
• Lack of zero-copy I/O capability
• Lack of multi-core scalability

https://github.com/yasukata/iip 19



Issues of Existing TCP/IP Stacks

https://github.com/yasukata/iip 20

Performance-optimized
TCP/IP stack

Performance-optimized
TCP/IP stacks often consist of

various components



Issues of Existing TCP/IP Stacks

https://github.com/yasukata/iip 21

Performance-optimized
TCP/IP stack

TCP/IP 
processing

Performance-optimized
TCP/IP stacks often consist of

various components



Issues of Existing TCP/IP Stacks

https://github.com/yasukata/iip 22

Performance-optimized
TCP/IP stack

TCP/IP 
processing

I/O
subsystem

Performance-optimized
TCP/IP stacks often consist of

various components



Issues of Existing TCP/IP Stacks

https://github.com/yasukata/iip 23

Performance-optimized
TCP/IP stack

TCP/IP 
processing

I/O
subsystem

Thread
runtime

Performance-optimized
TCP/IP stacks often consist of

various components



Issues of Existing TCP/IP Stacks

https://github.com/yasukata/iip 24

Performance-optimized
TCP/IP stack

TCP/IP 
processing

I/O
subsystem

Thread
runtime

Thread
scheduler

Performance-optimized
TCP/IP stacks often consist of

various components



Issues of Existing TCP/IP Stacks

https://github.com/yasukata/iip 25

Performance-optimized
TCP/IP stack

TCP/IP 
processing

A thread executing
TCP/IP processing

I/O
subsystem

Thread
runtime

Thread
scheduler

Performance-optimized
TCP/IP stacks often consist of

various components



Issues of Existing TCP/IP Stacks

https://github.com/yasukata/iip 26

Performance-optimized
TCP/IP stack

TCP/IP 
processing

A thread executing
TCP/IP processing

I/O
subsystem

Thread
runtime

Thread
scheduler

Performance-optimized
TCP/IP stacks often consist of

various components



Issues of Existing TCP/IP Stacks

https://github.com/yasukata/iip 27

Performance-optimized
TCP/IP stack

TCP/IP 
processing

A thread executing
TCP/IP processing

I/O
subsystem

Thread
runtime

Thread
scheduler

Performance-optimized
TCP/IP stacks often consist of

various components



Issues of Existing TCP/IP Stacks

https://github.com/yasukata/iip 28

Performance-optimized
TCP/IP stack

TCP/IP 
processing

A thread executing
TCP/IP processing

I/O
subsystem

Thread
runtime

Thread
scheduler

Dependencies on Other Components



Issues of Existing TCP/IP Stacks

https://github.com/yasukata/iip 29

Performance-optimized
TCP/IP stack

TCP/IP 
processing

A thread executing
TCP/IP processing

I/O
subsystem

Thread
runtime

Thread
scheduler

Dependencies on Other Components

Library-A

The I/O subsystem depends on
Library-A



Issues of Existing TCP/IP Stacks

https://github.com/yasukata/iip 30

Performance-optimized
TCP/IP stack

TCP/IP 
processing

A thread executing
TCP/IP processing

I/O
subsystem

Thread
runtime

Thread
scheduler

Dependencies on Other Components

Library-A

OS-B
version X

Library-A depends on
OS-B version X



Issues of Existing TCP/IP Stacks

https://github.com/yasukata/iip 31

Performance-optimized
TCP/IP stack

TCP/IP 
processing

A thread executing
TCP/IP processing

I/O
subsystem

Thread
runtime

Thread
scheduler

Dependencies on Other Components

Library-A

OS-B
version X

Application
logic

Implemented by TCP/IP stack users
(application developers)



Issues of Existing TCP/IP Stacks

https://github.com/yasukata/iip 32

Performance-optimized
TCP/IP stack

TCP/IP 
processing

A thread executing
TCP/IP processing

I/O
subsystem

Thread
runtime

Thread
scheduler

Dependencies on Other Components

Library-A

Developers wish to integrate
this TCP/IP stack with their app

OS-B
version X

Application
logic

Implemented by TCP/IP stack users
(application developers)



Issues of Existing TCP/IP Stacks

https://github.com/yasukata/iip 33

Performance-optimized
TCP/IP stack

TCP/IP 
processing

A thread executing
TCP/IP processing

I/O
subsystem

Thread
runtime

Thread
scheduler

Dependencies on Other Components

Library-A

OS-B
version X

Application
logic

Implemented by TCP/IP stack users
(application developers)

Library-C

This app depends on
Library-C



Issues of Existing TCP/IP Stacks

https://github.com/yasukata/iip 34

Performance-optimized
TCP/IP stack

TCP/IP 
processing

A thread executing
TCP/IP processing

I/O
subsystem

Thread
runtime

Thread
scheduler

Dependencies on Other Components

Library-A

Library-C depends on
OS-B version Y

OS-B
version X

Application
logic

Implemented by TCP/IP stack users
(application developers)

Library-C

OS-B
version Y



Issues of Existing TCP/IP Stacks

https://github.com/yasukata/iip 35

Performance-optimized
TCP/IP stack

TCP/IP 
processing

A thread executing
TCP/IP processing

I/O
subsystem

Thread
runtime

Thread
scheduler

Dependencies on Other Components

Library-A

Normally, two different versions of
an OS cannot coexist

OS-B
version X

Application
logic

Implemented by TCP/IP stack users
(application developers)

Library-C

OS-B
version Y



Issues of Existing TCP/IP Stacks

https://github.com/yasukata/iip 36

Performance-optimized
TCP/IP stack

TCP/IP 
processing

A thread executing
TCP/IP processing

I/O
subsystem

Thread
runtime

Thread
scheduler

Dependencies on Other Components

Library-A

As a result, it is hard to use
this TCP/IP stack for this app

OS-B
version X

Application
logic

Implemented by TCP/IP stack users
(application developers)

Library-C

OS-B
version Y



Issues of Existing TCP/IP Stacks

https://github.com/yasukata/iip 37

Performance-optimized
TCP/IP stack

TCP/IP 
processing

A thread executing
TCP/IP processing

I/O
subsystem

Thread
runtime

Thread
scheduler

Dependencies on Other Components

Library-A

Dependencies often increase
integration complexity

OS-B
version X

Application
logic

Implemented by TCP/IP stack users
(application developers)

Library-C

OS-B
version Y



Issues of Existing TCP/IP Stacks

https://github.com/yasukata/iip 38

Performance-optimized
TCP/IP stack

TCP/IP 
processing

A thread executing
TCP/IP processing

I/O
subsystem

Thread
runtime

Thread
scheduler

Functionality Conflicts



Issues of Existing TCP/IP Stacks

https://github.com/yasukata/iip 39

Performance-optimized
TCP/IP stack

TCP/IP 
processing

A thread executing
TCP/IP processing

I/O
subsystem

Thread
runtime

Thread
scheduler

A thread executing
TCP/IP processing

I/O
subsystem

Thread
runtime

Thread
scheduler

A new OS specialized
for performance

TCP/IP 
processing

Functionality Conflicts



Issues of Existing TCP/IP Stacks

https://github.com/yasukata/iip 40

Performance-optimized
TCP/IP stack

TCP/IP 
processing

A thread executing
TCP/IP processing

I/O
subsystem

Thread
runtime

Thread
scheduler

A thread executing
TCP/IP processing

I/O
subsystem

Thread
runtime

Thread
scheduler

A new OS specialized
for performance

TCP/IP 
processing

Functionality Conflicts

TCP/IP 
processing

Letʼs say we wish to use this
TCP/IP component on this new OS



Issues of Existing TCP/IP Stacks

https://github.com/yasukata/iip 41

Performance-optimized
TCP/IP stack

TCP/IP 
processing

A thread executing
TCP/IP processing

I/O
subsystem

Thread
runtime

Thread
scheduler

A thread executing
TCP/IP processing

I/O
subsystem

Thread
runtime

Thread
scheduler

A new OS specialized
for performance

TCP/IP 
processing

Functionality Conflicts

TCP/IP 
processing

This TCP/IP component depends
on its specific thread runtime



Issues of Existing TCP/IP Stacks

https://github.com/yasukata/iip 42

Performance-optimized
TCP/IP stack

TCP/IP 
processing

A thread executing
TCP/IP processing

I/O
subsystem

Thread
runtime

Thread
scheduler

A thread executing
TCP/IP processing

I/O
subsystem

Thread
runtime

Thread
scheduler

A new OS specialized
for performance

TCP/IP 
processing

Functionality Conflicts

TCP/IP 
processing

We also need to port
the thread runtime to this new OS

Thread
runtime



Issues of Existing TCP/IP Stacks

https://github.com/yasukata/iip 43

Performance-optimized
TCP/IP stack

TCP/IP 
processing

A thread executing
TCP/IP processing

I/O
subsystem

Thread
runtime

Thread
scheduler

A thread executing
TCP/IP processing

I/O
subsystem

Thread
runtime

Thread
scheduler

A new OS specialized
for performance

TCP/IP 
processing

Functionality Conflicts

TCP/IP 
processing

However, this new OS has
its own thread runtime



Issues of Existing TCP/IP Stacks

https://github.com/yasukata/iip 44

Performance-optimized
TCP/IP stack

TCP/IP 
processing

A thread executing
TCP/IP processing

I/O
subsystem

Thread
runtime

Thread
scheduler

A thread executing
TCP/IP processing

I/O
subsystem

Thread
runtime

Thread
scheduler

A new OS specialized
for performance

TCP/IP 
processing

Functionality Conflicts

TCP/IP 
processing

Two independent thread runtimes
normally cannot coexist

Thread

runtime



Issues of Existing TCP/IP Stacks

https://github.com/yasukata/iip 45

Performance-optimized
TCP/IP stack

TCP/IP 
processing

A thread executing
TCP/IP processing

I/O
subsystem

Thread
runtime

Thread
scheduler

A thread executing
TCP/IP processing

I/O
subsystem

Thread
runtime

Thread
scheduler

A new OS specialized
for performance

TCP/IP 
processing

Functionality Conflicts

TCP/IP 
processing

Here, the thread runtime
functionality is conflicting



Issues of Existing TCP/IP Stacks

https://github.com/yasukata/iip 46

Performance-optimized
TCP/IP stack

TCP/IP 
processing

A thread executing
TCP/IP processing

I/O
subsystem

Thread
runtime

Thread
scheduler

A thread executing
TCP/IP processing

I/O
subsystem

Thread
runtime

Thread
scheduler

A new OS specialized
for performance

TCP/IP 
processing

Functionality Conflicts

TCP/IP 
processing

As a result, it is hard to use this
TCP/IP component on this new OS



Issues of Existing TCP/IP Stacks

https://github.com/yasukata/iip 47

Performance-optimized
TCP/IP stack

TCP/IP 
processing

A thread executing
TCP/IP processing

I/O
subsystem

Thread
runtime

Thread
scheduler

A thread executing
TCP/IP processing

I/O
subsystem

Thread
runtime

Thread
scheduler

A new OS specialized
for performance

TCP/IP 
processing

Functionality Conflicts

TCP/IP 
processing

Functionality conflicts increase
integration complexity



Issues of Existing TCP/IP Stacks

https://github.com/yasukata/iip 48

Performance-optimized
TCP/IP stack

TCP/IP 
processing

A thread executing
TCP/IP processing

I/O
subsystem

Thread
runtime

Thread
scheduler

Limited Choices for CPU Core Assignment Models



Issues of Existing TCP/IP Stacks

https://github.com/yasukata/iip 49

Performance-optimized
TCP/IP stack

TCP/IP 
processing

A thread executing
TCP/IP processing

I/O
subsystem

Thread
runtime

Thread
scheduler

Limited Choices for CPU Core Assignment Models

TCP/IP stacks often include
threads for TCP/IP processing



Issues of Existing TCP/IP Stacks

https://github.com/yasukata/iip 50

Performance-optimized
TCP/IP stack

TCP/IP 
processing

A thread executing
TCP/IP processing

I/O
subsystem

Thread
runtime

Thread
scheduler

Limited Choices for CPU Core Assignment Models

TCP/IP stacks often assume
app logic is run by another thread

A thread executing
application logic

Implemented by TCP/IP stack users
(application developers)



Issues of Existing TCP/IP Stacks

https://github.com/yasukata/iip 51

Performance-optimized
TCP/IP stack

TCP/IP 
processing

A thread executing
TCP/IP processing

I/O
subsystem

Thread
runtime

Thread
scheduler

Limited Choices for CPU Core Assignment Models

A thread executing
application logic

Implemented by TCP/IP stack users
(application developers)

Three potential CPU core assignment models



Issues of Existing TCP/IP Stacks

https://github.com/yasukata/iip 52

Performance-optimized
TCP/IP stack

TCP/IP 
processing

A thread executing
TCP/IP processing

I/O
subsystem

Thread
runtime

Thread
scheduler

Limited Choices for CPU Core Assignment Models

A thread executing
application logic

Implemented by TCP/IP stack users
(application developers)

Core 1 Core 2

App Net

Three potential CPU core assignment models
Split

App and Net threads run
on different CPU cores



Issues of Existing TCP/IP Stacks

https://github.com/yasukata/iip 53

Performance-optimized
TCP/IP stack

TCP/IP 
processing

A thread executing
TCP/IP processing

I/O
subsystem

Thread
runtime

Thread
scheduler

Limited Choices for CPU Core Assignment Models

A thread executing
application logic

Implemented by TCP/IP stack users
(application developers)

Core 1 Core 2

App Net

Three potential CPU core assignment models
Split

Core 1
Net

App

Merge

App and Net threads run
on the same CPU core



Issues of Existing TCP/IP Stacks

https://github.com/yasukata/iip 54

Performance-optimized
TCP/IP stack

TCP/IP 
processing

A thread executing
TCP/IP processing

I/O
subsystem

Thread
runtime

Thread
scheduler

Limited Choices for CPU Core Assignment Models

A thread executing
application logic

Implemented by TCP/IP stack users
(application developers)

Core 1 Core 2

App Net

Three potential CPU core assignment models
Split

Core 1 Core 2
Net

App

Net

App

Merge

Duplicate the same setup
to available CPU cores



Issues of Existing TCP/IP Stacks

https://github.com/yasukata/iip 55

Performance-optimized
TCP/IP stack

TCP/IP 
processing

A thread executing
TCP/IP processing

I/O
subsystem

Thread
runtime

Thread
scheduler

Limited Choices for CPU Core Assignment Models

A thread executing
application logic

Implemented by TCP/IP stack users
(application developers)

Core 1 Core 2

App Net

Core 1 Core 2
Net

Core 1

App
+

Net

App

Net

App

Three potential CPU core assignment models
Split Merge Unified

A thread executes both App and Net logic



Issues of Existing TCP/IP Stacks

https://github.com/yasukata/iip 56

Performance-optimized
TCP/IP stack

TCP/IP 
processing

A thread executing
TCP/IP processing

I/O
subsystem

Thread
runtime

Thread
scheduler

Limited Choices for CPU Core Assignment Models

A thread executing
application logic

Implemented by TCP/IP stack users
(application developers)

Core 1 Core 2

App Net

Core 1 Core 2
Net

Core 1 Core 2

App
+

Net

App
+

Net

App

Net

App

Three potential CPU core assignment models
Split Merge Unified

Duplicate the setup to available CPU cores



Issues of Existing TCP/IP Stacks

https://github.com/yasukata/iip 57

Performance-optimized
TCP/IP stack

TCP/IP 
processing

A thread executing
TCP/IP processing

I/O
subsystem

Thread
runtime

Thread
scheduler

Limited Choices for CPU Core Assignment Models

A thread executing
application logic

Implemented by TCP/IP stack users
(application developers)

Core 1 Core 2

App Net

Core 1 Core 2
Net

Core 1 Core 2

App
+

Net

App
+

Net

App

Net

App

Three potential CPU core assignment models
Split Merge Unified

Each of them has different performance characteristics



Issues of Existing TCP/IP Stacks

https://github.com/yasukata/iip 58

Performance-optimized
TCP/IP stack

TCP/IP 
processing

A thread executing
TCP/IP processing

I/O
subsystem

Thread
runtime

Thread
scheduler

Limited Choices for CPU Core Assignment Models

A thread executing
application logic

Implemented by TCP/IP stack users
(application developers)

Core 1 Core 2

App Net

Core 1 Core 2
Net

Core 1 Core 2

App
+

Net

App
+

Net

App

Net

App

Three potential CPU core assignment models
Split Merge Unified

CPU utilization



Issues of Existing TCP/IP Stacks

https://github.com/yasukata/iip 59

Performance-optimized
TCP/IP stack

TCP/IP 
processing

A thread executing
TCP/IP processing

I/O
subsystem

Thread
runtime

Thread
scheduler

Limited Choices for CPU Core Assignment Models

A thread executing
application logic

Implemented by TCP/IP stack users
(application developers)

Core 1 Core 2

App Net

Core 1 Core 2
Net

Core 1 Core 2

App
+

Net

App
+

Net

App

Net

App

Three potential CPU core assignment models
Split Merge Unified

A busy thread cannot use other CPU coresʼ unused cycles

100% 25%

CPU utilization



Issues of Existing TCP/IP Stacks

https://github.com/yasukata/iip 60

Performance-optimized
TCP/IP stack

TCP/IP 
processing

A thread executing
TCP/IP processing

I/O
subsystem

Thread
runtime

Thread
scheduler

Limited Choices for CPU Core Assignment Models

A thread executing
application logic

Implemented by TCP/IP stack users
(application developers)

Core 1 Core 2

App Net

Core 1 Core 2
Net

Core 1 Core 2

App
+

Net

App
+

Net

App

Net

App

Three potential CPU core assignment models
Split Merge Unified

A busy thread cannot use other CPU coresʼ unused cycles

Low CPU utilization

100% 25%

CPU utilization



Issues of Existing TCP/IP Stacks

https://github.com/yasukata/iip 61

Performance-optimized
TCP/IP stack

TCP/IP 
processing

A thread executing
TCP/IP processing

I/O
subsystem

Thread
runtime

Thread
scheduler

Limited Choices for CPU Core Assignment Models

A thread executing
application logic

Implemented by TCP/IP stack users
(application developers)

Core 1 Core 2

App Net

Core 1 Core 2
Net

Core 1 Core 2

App
+

Net

App
+

Net

App

Net

App

Three potential CPU core assignment models
Split Merge Unified

100% 25%

The merge and unified models can fully use the CPU cycles

Low CPU utilization

100% 100% 100% 100%

CPU utilization



Issues of Existing TCP/IP Stacks

https://github.com/yasukata/iip 62

Performance-optimized
TCP/IP stack

TCP/IP 
processing

A thread executing
TCP/IP processing

I/O
subsystem

Thread
runtime

Thread
scheduler

Limited Choices for CPU Core Assignment Models

A thread executing
application logic

Implemented by TCP/IP stack users
(application developers)

Core 1 Core 2

App Net

Core 1 Core 2
Net

Core 1 Core 2

App
+

Net

App
+

Net

App

Net

App

Three potential CPU core assignment models
Split Merge Unified

Low CPU utilization Context switch



Issues of Existing TCP/IP Stacks

https://github.com/yasukata/iip 63

Performance-optimized
TCP/IP stack

TCP/IP 
processing

A thread executing
TCP/IP processing

I/O
subsystem

Thread
runtime

Thread
scheduler

Limited Choices for CPU Core Assignment Models

A thread executing
application logic

Implemented by TCP/IP stack users
(application developers)

Core 1 Core 2

App Net

Core 1 Core 2
Net

Core 1 Core 2

App
+

Net

App
+

Net

App

Net

App

Three potential CPU core assignment models
Split Merge Unified

Low CPU utilization

A thread switching is necessary for every app/net transition

Context switch



Issues of Existing TCP/IP Stacks

https://github.com/yasukata/iip 64

Performance-optimized
TCP/IP stack

TCP/IP 
processing

A thread executing
TCP/IP processing

I/O
subsystem

Thread
runtime

Thread
scheduler

Limited Choices for CPU Core Assignment Models

A thread executing
application logic

Implemented by TCP/IP stack users
(application developers)

Core 1 Core 2

App Net

Core 1 Core 2
Net

Core 1 Core 2

App
+

Net

App
+

Net

App

Net

App

Three potential CPU core assignment models
Split Merge Unified

Low CPU utilization

A thread switching is necessary for every app/net transition

High transition cost Context switch



Issues of Existing TCP/IP Stacks

https://github.com/yasukata/iip 65

Performance-optimized
TCP/IP stack

TCP/IP 
processing

A thread executing
TCP/IP processing

I/O
subsystem

Thread
runtime

Thread
scheduler

Limited Choices for CPU Core Assignment Models

A thread executing
application logic

Implemented by TCP/IP stack users
(application developers)

Core 1 Core 2

App Net

Core 1 Core 2
Net

Core 1 Core 2

App
+

Net

App
+

Net

App

Net

App

Three potential CPU core assignment models
Split Merge Unified

Low CPU utilization

The split and unified models are free from this transition cost

High transition cost Context switch



Issues of Existing TCP/IP Stacks

https://github.com/yasukata/iip 66

Performance-optimized
TCP/IP stack

TCP/IP 
processing

A thread executing
TCP/IP processing

I/O
subsystem

Thread
runtime

Thread
scheduler

Limited Choices for CPU Core Assignment Models

A thread executing
application logic

Implemented by TCP/IP stack users
(application developers)



Issues of Existing TCP/IP Stacks

https://github.com/yasukata/iip 67

Performance-optimized
TCP/IP stack

TCP/IP 
processing

A thread executing
TCP/IP processing

I/O
subsystem

Thread
runtime

Thread
scheduler

Limited Choices for CPU Core Assignment Models

A thread executing
application logic

Implemented by TCP/IP stack users
(application developers)

TCP/IP stack design often includes
the assignment model selection



Issues of Existing TCP/IP Stacks

https://github.com/yasukata/iip 68

Performance-optimized
TCP/IP stack

TCP/IP 
processing

A thread executing
TCP/IP processing

I/O
subsystem

Thread
runtime

Thread
scheduler

Limited Choices for CPU Core Assignment Models

A thread executing
application logic

Implemented by TCP/IP stack users
(application developers)

Developers cannot choose
a desired assignment model



Issues of Existing TCP/IP Stacks

https://github.com/yasukata/iip 69

Performance-optimized
TCP/IP stack

TCP/IP 
processing

A thread executing
TCP/IP processing

I/O
subsystem

Thread
runtime

Thread
scheduler

Limited Choices for CPU Core Assignment Models

A thread executing
application logic

Implemented by TCP/IP stack users
(application developers)

This issue makes it hard to build
performance-optimal systems



Issues of Existing TCP/IP Stacks

https://github.com/yasukata/iip 70

Portability-aware
TCP/IP stack

TCP/IP 
processing

A thread executing
TCP/IP processing

I/O
subsystem

Thread
runtime

Thread
scheduler



Issues of Existing TCP/IP Stacks

https://github.com/yasukata/iip 71

Portability-aware
TCP/IP stack

TCP/IP 
processing

A thread executing
TCP/IP processing

I/O
subsystem

Thread
runtime

Thread
scheduler

Portability-aware TCP/IP
TCP/IP stacks usually maintain

limited functionalities



Issues of Existing TCP/IP Stacks

https://github.com/yasukata/iip 72

Portability-aware
TCP/IP stack

TCP/IP 
processing

A thread executing
TCP/IP processing

I/O
subsystem

Thread
runtime

Thread
scheduler

A thread executing
TCP/IP processing

I/O
subsystem

Thread
runtime

Thread
scheduler

Provided by TCP/IP stack users
(developers)

Developers are assumed to provide
platform-dependent components



Issues of Existing TCP/IP Stacks

https://github.com/yasukata/iip 73

Portability-aware
TCP/IP stack

TCP/IP 
processing

A thread executing
TCP/IP processing

I/O
subsystem

Thread
runtime

Thread
scheduler

A thread executing
TCP/IP processing

I/O
subsystem

Thread
runtime

Thread
scheduler

Provided by TCP/IP stack users
(developers)

Developers are assumed to provide
platform-dependent components

This design mitigates
the integration complexity



Issues of Existing TCP/IP Stacks

https://github.com/yasukata/iip 74

Portability-aware
TCP/IP stack

TCP/IP 
processing

A thread executing
TCP/IP processing

I/O
subsystem

Thread
runtime

Thread
scheduler

Provided by TCP/IP stack users
(developers)

Not sufficiently aware of performance-critical factors



Issues of Existing TCP/IP Stacks

https://github.com/yasukata/iip 75

Portability-aware
TCP/IP stack

TCP/IP 
processing

A thread executing
TCP/IP processing

I/O
subsystem

Thread
runtime

Thread
scheduler

Provided by TCP/IP stack users
(developers)

Not sufficiently aware of performance-critical factors

• Unaware of NIC offloading features



Issues of Existing TCP/IP Stacks

https://github.com/yasukata/iip 76

Portability-aware
TCP/IP stack

TCP/IP 
processing

A thread executing
TCP/IP processing

I/O
subsystem

Thread
runtime

Thread
scheduler

Provided by TCP/IP stack users
(developers)

Not sufficiently aware of performance-critical factors

• Unaware of NIC offloading features
• Lack of zero-copy I/O capability



Issues of Existing TCP/IP Stacks

https://github.com/yasukata/iip 77

Portability-aware
TCP/IP stack

TCP/IP 
processing

A thread executing
TCP/IP processing

I/O
subsystem

Thread
runtime

Thread
scheduler

Provided by TCP/IP stack users
(developers)

Not sufficiently aware of performance-critical factors

• Unaware of NIC offloading features
• Lack of zero-copy I/O capability
• Lack of multi-core scalability



Issues of Existing TCP/IP Stacks

https://github.com/yasukata/iip 78

Portability-aware
TCP/IP stack

TCP/IP 
processing

A thread executing
TCP/IP processing

I/O
subsystem

Thread
runtime

Thread
scheduler

Provided by TCP/IP stack users
(developers)

Not sufficiently aware of performance-critical factors

• Unaware of NIC offloading features
• Lack of zero-copy I/O capability
• Lack of multi-core scalability

Portability-aware TCP/IP stacks cannot achieve
good performance in various workloads



iip

https://github.com/yasukata/iip 79

TCP/IP 
processing

A thread executing
TCP/IP processing

I/O
subsystem

Thread
runtime

Thread
scheduler

Provided by TCP/IP stack users
(developers)iip



iip

https://github.com/yasukata/iip 80

TCP/IP 
processing

A thread executing
TCP/IP processing

I/O
subsystem

Thread
runtime

Thread
scheduler

Provided by TCP/IP stack users
(developers)iip

iip only implements the TCP/IP processing functionality
to minimize the chance for causing functionality conflicts



iip

https://github.com/yasukata/iip 81

TCP/IP 
processing

A thread executing
TCP/IP processing

I/O
subsystem

Thread
runtime

Thread
scheduler

Provided by TCP/IP stack users
(developers)iip

iip only implements the TCP/IP processing functionality
to minimize the chance for causing functionality conflicts

API

Platform-dependent functionalities are assumed
to be provided by developers through the API



iip

https://github.com/yasukata/iip 82

TCP/IP 
processing

A thread executing
TCP/IP processing

I/O
subsystem

Thread
runtime

Thread
scheduler

Provided by TCP/IP stack users
(developers)iip

iip only implements the TCP/IP processing functionality
to minimize the chance for causing functionality conflicts

API

Platform-dependent functionalities are assumed
to be provided by developers through the API

No dependency on CPUs, NICs,
OSes, libraries, and compilers



iip

https://github.com/yasukata/iip 83

TCP/IP 
processing

A thread executing
TCP/IP processing

I/O
subsystem

Thread
runtime

Thread
scheduler

Provided by TCP/IP stack users
(developers)iip

iip only implements the TCP/IP processing functionality
to minimize the chance for causing functionality conflicts

API

Platform-dependent functionalities are assumed
to be provided by developers through the API

No dependency on CPUs, NICs,
OSes, libraries, and compilers

C89 / C++98 compliant
for old and future compilers



iip

https://github.com/yasukata/iip 84

TCP/IP 
processing

A thread executing
TCP/IP processing

I/O
subsystem

Thread
runtime

Thread
scheduler

Provided by TCP/IP stack users
(developers)iip

iip only implements the TCP/IP processing functionality
to minimize the chance for causing functionality conflicts

API

Platform-dependent functionalities are assumed
to be provided by developers through the API

No dependency on CPUs, NICs,
OSes, libraries, and compilers

C89 / C++98 compliant
for old and future compilers

iip pays attention to
performance-critical factors



iip

https://github.com/yasukata/iip 85

TCP/IP 
processing

A thread executing
TCP/IP processing

I/O
subsystem

Thread
runtime

Thread
scheduler

Provided by TCP/IP stack users
(developers)iip

iip only implements the TCP/IP processing functionality
to minimize the chance for causing functionality conflicts

API

Platform-dependent functionalities are assumed
to be provided by developers through the API

No dependency on CPUs, NICs,
OSes, libraries, and compilers

C89 / C++98 compliant
for old and future compilers

iip pays attention to
performance-critical factors
• uses NIC offloading features



iip

https://github.com/yasukata/iip 86

TCP/IP 
processing

A thread executing
TCP/IP processing

I/O
subsystem

Thread
runtime

Thread
scheduler

Provided by TCP/IP stack users
(developers)iip

iip only implements the TCP/IP processing functionality
to minimize the chance for causing functionality conflicts

API

Platform-dependent functionalities are assumed
to be provided by developers through the API

No dependency on CPUs, NICs,
OSes, libraries, and compilers

C89 / C++98 compliant
for old and future compilers

iip pays attention to
performance-critical factors
• uses NIC offloading features
• supports zero-copy I/O



iip

https://github.com/yasukata/iip 87

TCP/IP 
processing

A thread executing
TCP/IP processing

I/O
subsystem

Thread
runtime

Thread
scheduler

Provided by TCP/IP stack users
(developers)iip

iip only implements the TCP/IP processing functionality
to minimize the chance for causing functionality conflicts

API

Platform-dependent functionalities are assumed
to be provided by developers through the API

No dependency on CPUs, NICs,
OSes, libraries, and compilers

C89 / C++98 compliant
for old and future compilers

iip pays attention to
performance-critical factors
• uses NIC offloading features
• supports zero-copy I/O
• aware of multi-core scalability



Integratability Benefits
• iip can be integrated into the ns-3 simulator written in C++
• https://github.com/yasukata/iip-ns

https://github.com/yasukata/iip 88

ns-3

iip

A thread executing
TCP/IP processing

I/O
subsystem

Thread
runtime

Thread
scheduler

https://github.com/yasukata/iip-ns


Integratability Benefits
• iip can be integrated into the ns-3 simulator written in C++
• https://github.com/yasukata/iip-ns

https://github.com/yasukata/iip 89

ns-3

iip

A thread executing
TCP/IP processing

I/O
subsystem

Thread
runtime

Thread
scheduler

These functionalities are
specific to ns-3

https://github.com/yasukata/iip-ns


Integratability Benefits
• iip can be integrated into the ns-3 simulator written in C++
• https://github.com/yasukata/iip-ns

https://github.com/yasukata/iip 90

ns-3

iip

A thread executing
TCP/IP processing

I/O
subsystem

Thread
runtime

Thread
scheduler

These functionalities are
specific to ns-3

These functionalities makes it hard
for TCP/IP stacks depending on

common OS features to run on ns-3

https://github.com/yasukata/iip-ns


Integratability Benefits
• iip can be integrated into the ns-3 simulator written in C++
• https://github.com/yasukata/iip-ns

https://github.com/yasukata/iip 91

ns-3

iip

A thread executing
TCP/IP processing

I/O
subsystem

Thread
runtime

Thread
scheduler

These functionalities are
specific to ns-3

These functionalities makes it hard
for TCP/IP stacks depending on

common OS features to run on ns-3iip can be easily integrated into ns-3 because
it does not depend on platform-specific functionalities

https://github.com/yasukata/iip-ns


Integratability Benefits
• iip runs on various I/O backends, including but not limited to:
• DPDK (Linux): https://github.com/yasukata/iip-dpdk
• AF_XDP (Linux): https://github.com/yasukata/iip-af_xdp
• netmap (Linux/FreeBSD): https://github.com/yasukata/iip-netmap

https://github.com/yasukata/iip 92

iip

I/O
subsystem

iip does not depend on
specific I/O subsystems

https://github.com/yasukata/iip-dpdk
https://github.com/yasukata/iip-af_xdp
https://github.com/yasukata/iip-netmap


Evaluation: Small Message Exchange
• TCP ping-pong workload

https://github.com/yasukata/iip 93

100 Gbpsiip

pinger
app

32 CPU
cores

DPDK
iip

ponger
app

1~32 CPU
cores

DPDK

The pinger and ponger exchange
1-byte TCP payloads

We have tested while changing
the number of CPU cores

on the ponger side

A ponger thread handles
32 concurrent TCP connections



Evaluation: Small Message Exchange
• TCP ping-pong workload

https://github.com/yasukata/iip 94

100 Gbpsiip

pinger
app

32 CPU
cores

DPDK
iip

ponger
app

1~32 CPU
cores

DPDK

The pinger and ponger exchange
1-byte TCP payloads

We have tested while changing
the number of CPU cores

on the ponger side

A ponger thread handles
32 concurrent TCP connections

• These two perform ping-pong with
1-byte TCP payloads
• Pinger always uses 32 CPU cores
• Ponger uses 1 ~ 32 CPU cores



Evaluation: Small Message Exchange
• The pinger and ponger apps exchange 1-byte TCP payloads

https://github.com/yasukata/iip 95

pongerʼs



Evaluation: Small Message Exchange
• The pinger and ponger apps exchange 1-byte TCP payloads

https://github.com/yasukata/iip 96

pongerʼs



Evaluation: Small Message Exchange
• The pinger and ponger apps exchange 1-byte TCP payloads

https://github.com/yasukata/iip 97

pongerʼs



Evaluation: Small Message Exchange
• The pinger and ponger apps exchange 1-byte TCP payloads

https://github.com/yasukata/iip 98

pongerʼs

• Performance factors
• Multi-core scalability



Evaluation: Small Message Exchange
• The pinger and ponger apps exchange 1-byte TCP payloads

https://github.com/yasukata/iip 99

pongerʼs

• Performance factors
• Multi-core scalability

Performance of TCP/IP stacks which
are unaware of multi-core scalability



Evaluation: Small Message Exchange
• The pinger and ponger apps exchange 1-byte TCP payloads

https://github.com/yasukata/iip 100

pongerʼs

• Performance factors
• Multi-core scalability

Performance of TCP/IP stacks which
are unaware of multi-core scalability



Evaluation: Small Message Exchange
• The pinger and ponger apps exchange 1-byte TCP payloads

https://github.com/yasukata/iip 101

pongerʼs

• Performance factors
• Multi-core scalability

All NIC offloading features and
zero-copy transmission are activated



Evaluation: Small Message Exchange
• The pinger and ponger apps exchange 1-byte TCP payloads

https://github.com/yasukata/iip 102

pongerʼs

• Performance factors
• Multi-core scalability
• Checksum offloading

When NIC checksum offloading is
deactivated, throughput is degraded



Evaluation: Small Message Exchange
• The pinger and ponger apps exchange 1-byte TCP payloads

https://github.com/yasukata/iip 103

pongerʼs

• Performance factors
• Multi-core scalability
• Checksum offloading

When zero-copy transmission is
deactivated, throughput is increased



Evaluation: Small Message Exchange
• The pinger and ponger apps exchange 1-byte TCP payloads

https://github.com/yasukata/iip 104

pongerʼs

• Performance factors
• Multi-core scalability
• Checksum offloading

• Tips
• For small messages,

copy is faster than
zero-copy transmission



Evaluation: CPU Core Assignment Models
• TCP ping-pong workload

https://github.com/yasukata/iip 105

100 Gbpsiip

pinger
app

32 CPU
cores

DPDK
iip

ponger
app

2 CPU
cores

DPDK

The pinger and ponger exchange
1-byte TCP payloads

We applied the three models
on the ponger side



Evaluation: CPU Core Assignment Models
• TCP ping-pong workload

https://github.com/yasukata/iip 106

100 Gbpsiip

pinger
app

32 CPU
cores

DPDK
iip

ponger
app

2 CPU
cores

DPDK

The pinger and ponger exchange
1-byte TCP payloads

We applied the three models
on the ponger side

• Mostly same as the previous experiment
• Ponger adopts Split, Merge, Unified 

models using 2 CPU cores



Evaluation: CPU Core Assignment Models
• The pinger and ponger apps exchange 1-byte TCP payloads

https://github.com/yasukata/iip 107

App Net

Net

App +
Net

App

Split

Merge Net
App

App +
NetUnified



Evaluation: CPU Core Assignment Models
• The pinger and ponger apps exchange 1-byte TCP payloads

https://github.com/yasukata/iip 108

App Net

Net

App +
Net

App

Split

Merge Net
App

App +
NetUnified



Evaluation: CPU Core Assignment Models
• The pinger and ponger apps exchange 1-byte TCP payloads

https://github.com/yasukata/iip 109

App Net

Net

App +
Net

App

Split

Merge Net
App

App +
NetUnified



Evaluation: CPU Core Assignment Models
• The pinger and ponger apps exchange 1-byte TCP payloads

https://github.com/yasukata/iip 110

App Net

Net

App +
Net

App

Split

Merge Net
App

App +
NetUnified



Evaluation: CPU Core Assignment Models
• The pinger and ponger apps exchange 1-byte TCP payloads

https://github.com/yasukata/iip 111

App Net

Net

App +
Net

App

Split

Merge Net
App

App +
NetUnified



Evaluation: CPU Core Assignment Models
• The pinger and ponger apps exchange 1-byte TCP payloads

https://github.com/yasukata/iip 112

App Net

Net

App +
Net

App

Split

Merge Net
App

App +
NetUnified

The latency gap comes from the app/net
transition cost of the merge model



Evaluation: CPU Core Assignment Models
• The pinger and ponger apps exchange 1-byte TCP payloads

https://github.com/yasukata/iip 113

App Net

Net

App +
Net

App

Split

Merge Net
App

App +
NetUnified

The merge model exhibits higher throughput
than the split model because of CPU utilization



Evaluation: CPU Core Assignment Models
• The pinger and ponger apps exchange 1-byte TCP payloads

https://github.com/yasukata/iip 114

App Net

Net

App +
Net

App

Split

Merge Net
App

App +
NetUnified

The unified model achieves the best speed
because it is free from the issues of the others



Evaluation: Bulk Data Transfer
• Data transfer workload

https://github.com/yasukata/iip 115

The sender sends the same data
to the receiver repeatedly

100 Gbpsiip

sender
app

1 CPU
cores

DPDK
iip

receiver
app

1 CPU
core

DPDK

These two communicate
over 1 TCP connection

Each uses 1 CPU core



Evaluation: Bulk Data Transfer
• Data transfer workload

https://github.com/yasukata/iip 116

The sender sends the same data
to the receiver repeatedly

100 Gbpsiip

sender
app

1 CPU
cores

DPDK
iip

receiver
app

1 CPU
core

DPDK

These two communicate
over 1 TCP connection

Each uses 1 CPU core

• The sender sends the same data to 
the receiver over 1 TCP connection
• Each uses 1 CPU core



Evaluation: Bulk Data Transfer
• The sender repeatedly sends the same data to the receiver

https://github.com/yasukata/iip 117



Evaluation: Bulk Data Transfer
• The sender repeatedly sends the same data to the receiver

https://github.com/yasukata/iip 118



Evaluation: Bulk Data Transfer
• The sender repeatedly sends the same data to the receiver

https://github.com/yasukata/iip 119



Evaluation: Bulk Data Transfer
• The sender repeatedly sends the same data to the receiver

https://github.com/yasukata/iip 120

All NIC offloading features and
zero-copy transmission are activated



Evaluation: Bulk Data Transfer
• The sender repeatedly sends the same data to the receiver

https://github.com/yasukata/iip 121

• Performance factors
• Zero-copy transmission

When the sender deactivates
zero-copy transmission,
throughput is degraded
according to the size of the data



Evaluation: Bulk Data Transfer
• The sender repeatedly sends the same data to the receiver

https://github.com/yasukata/iip 122

• Performance factors
• Zero-copy transmission

When the sender deactivates
zero-copy transmission,
throughput is degraded
according to the size of the data

We consider this happens because
the payload occupies the CPU cache



Evaluation: Bulk Data Transfer
• The sender repeatedly sends the same data to the receiver

https://github.com/yasukata/iip 123

• Performance factors
• Zero-copy transmission
• TSO

When the sender deactivates TSO,
throughput is almost halved



Evaluation: Bulk Data Transfer
• The sender repeatedly sends the same data to the receiver

https://github.com/yasukata/iip 124

• Performance factors
• Zero-copy transmission
• TSO
• Checksum offloading

When the sender deactivates
TSO and checksum offloading,
throughput goes down to around 10%



Evaluation: Bulk Data Transfer
• The sender repeatedly sends the same data to the receiver

https://github.com/yasukata/iip 125

• Performance factors
• Zero-copy transmission
• TSO
• Checksum offloading

When the receiver deactivates
checksum offloading,
throughput goes down to around 10%



Evaluation: Bulk Data Transfer
• The sender repeatedly sends the same data to the receiver

https://github.com/yasukata/iip 126

• Performance factors
• Zero-copy transmission
• TSO
• Checksum offloading

When the receiver disables LRO,
it can still catch up with the link speed



Evaluation: Bulk Data Transfer
• The sender repeatedly sends the same data to the receiver

https://github.com/yasukata/iip 127

• Performance factors
• Zero-copy transmission
• TSO
• Checksum offloading

• Note
• This does not mean

LRO is not necessary
• Just we did not see 

differences in this workload



Summary
• iip is a TCP/IP stack implementation that aims to allow for 

easy integration and good performance simultaneously

• Main page: https://github.com/yasukata/iip
• Assets used in the paper: https://github.com/yasukata/bench-

iip/tree/9cf2488ec93ae51f4bd7b18923a5d1a233852f66

https://github.com/yasukata/iip 128

Please try it if you are interested

https://github.com/yasukata/iip
https://github.com/yasukata/bench-iip/tree/9cf2488ec93ae51f4bd7b18923a5d1a233852f66
https://github.com/yasukata/bench-iip/tree/9cf2488ec93ae51f4bd7b18923a5d1a233852f66

