
Exit-Less, Isolated, and Shared Access
for Virtual Machines

Kenichi Yasukata, Hajime Tazaki, Pierre-Louis Aublin

ASPLOS 2023 – Vancouver, Canada – 29th March

1

About this Work

• ELISA: Exit-Less, Isolated, and Shared Access
• A novel in-memory object sharing scheme for VMs

• Project web page : https://github.com/yasukata/ELISA
• Paper
• Slides
• Source code
• Commentary

The QR code stays there
during the presentation

2

https://github.com/yasukata/ELISA

Virtual Machines (VMs)

Physical
Machine

3

Virtual Machines (VMs)

Physical
Machine

VM

VM

VM

4

Virtual Machines (VMs)

Physical
Machine

VM

VM

VM

5

Memory Isolation

Physical
Machine

Host Physical Memory
Address Space

DMAmap

map

map

VM

VM

VM

6

Memory Isolation

Physical
Machine

Host Physical Memory
Address Space

DMAmap

map

map

VM

VM

VM

7

Memory Isolation

Physical
Machine

Host Physical Memory
Address Space

DMAmap

map

map

VM

VM

VM

8

Sharing Scheme 1 : Direct-mapping

Physical
Machine

Host Physical Memory
Address Space

DMA
map

map

map

VM

VM

VM

9

Sharing Scheme 1 : Direct-mapping

Physical
Machine

Host Physical Memory
Address Space

DMA
map

map

map

VM

VM

10

Sharing Scheme 2 : Host-interposition

Physical
Machine

Host Physical Memory
Address Space

DMA

Host
(Hypervisor)

Request

Request

Access

Request

VM

VM

VM

11

Sharing Scheme 2 : Host-interposition

Physical
Machine

Host Physical Memory
Address Space

DMA

Host
(Hypervisor)

Request

Request

Access

Request

VM

VM

VM

exit

exit

exit

12

Problem Statement

• The two existing in-memory object sharing schemes cannot
offer isolation and low overhead at once

Exit-Less, Isolated, and Shared Access for Virtual Machines
Kenichi Yasukata

IIJ Research Laboratory
Japan

Hajime Tazaki
IIJ Research Laboratory

Japan

Pierre-Louis Aublin
IIJ Research Laboratory

Japan

ABSTRACT
This paper explores Exit-Less, Isolated, and Shared Access (ELISA),
a novel in-memory object sharing scheme for Virtual Machines
(VMs). ELISA has the isolation advantage over the shared memory
directly exposed to guest VMswhile its overhead is smaller than that
of host-interposition relying on the costly exit from the VM context.
In a nutshell, ELISA isolates shared in-memory objects by Extended
Page Table (EPT) separation, and a guest VM accesses them by
switching the EPT context using VMFUNC, a low-overhead CPU
instruction of Intel CPUs. Our experiment shows that the overhead
of ELISA is 3.5 times smaller than that of VMCALL-oriented host-
interposition. We demonstrate the bene�ts of ELISA through two
use cases; by replacing VMCALL with ELISA, a VM networking
system and an in-memory key-value store exhibit 163% and 64%
higher performance respectively.

CCS CONCEPTS
• Software and its engineering! Virtual machines.

KEYWORDS
Virtualization, Isolation, Shared Memory

ACM Reference Format:
Kenichi Yasukata, Hajime Tazaki, and Pierre-Louis Aublin. 2023. Exit-Less,
Isolated, and Shared Access for Virtual Machines. In Proceedings of the 28th
ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 3 (ASPLOS ’23), March 25–29,
2023, Vancouver, BC, Canada. ACM, New York, NY, USA, 14 pages. https:
//doi.org/10.1145/3582016.3582042

1 INTRODUCTION
Virtual Machines (VMs) are one of the most popular computation
environments. Particularly, they have been the foundation of cloud
computing infrastructures. One of the primary reasons why VMs
are widely used is their isolation property: a guest VM can access
only the resources granted by the host. In particular, memory iso-
lation is essential to guarantee that a guest VM will not access
in-memory objects (e.g., the code to be executed, the data manipu-
lated by the code, and the memory region used for Direct Memory
Access (DMA) of a physical I/O device) dedicated to the host or
other guest VMs. Nevertheless, sharing the same in-memory ob-
ject can be bene�cial, for example, to share a physical I/O device
between di�erent guest VMs.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9918-0/23/03.
https://doi.org/10.1145/3582016.3582042

Table 1: Properties of the in-memory object sharing schemes.

Description Shared access Isolation overhead
Direct-mapping No isolation None
Host-interposition Isolated High
ELISA (this work) Isolated Low

Problem statement. There are two existing in-memory object
sharing schemes for VMs: direct-mapping which directly maps the
same memory region to di�erent guest VMs, and host-interposition
where the host intermediates access to a shared in-memory object.
Both have pros and cons as shown in Table 1. Host-interposition of-
fers isolation but incurs a high overhead due to the exit from the VM
context [1]. In contrast, direct-mapping o�ers high performance
but does not provide isolation. Despite its negative performance
impact, the host-interposition model is popularly applied in virtu-
alized environments where guest VMs are untrusted and need to
be isolated from each other and from the host. The problem, this
work addresses, is the lack of an in-memory object sharing scheme
that provides both isolation and low overhead.

Motivating examples. This problem is serious in various virtu-
alization scenarios.

• Virtual I/O. For example, virtual I/O systems typically adopt
the host-interposition model and hide the DMA regions of
physical I/O devices in the trusted host context so that un-
trusted guest VMs cannot directly manipulate the physical
I/O devices. However, in the recent trend of hardware inno-
vation, a drastic improvement in CPU speed is not expected
while physical I/O devices are continuously getting faster.
Consequently, the cost of the exit from the VM context,
which appears as a CPU overhead (§ 6.1), makes it more dif-
�cult for virtual I/O systems to fully utilize the potential of
high-speed physical I/O devices; we observe that, in a highly-
optimized VM networking system called HyperNF [44], the
overhead of exiting from the VM context causes a 49% per-
formance reduction, compared to the direct-mapping model,
for I/O involving a physical NIC (§ 7.1).

• Cross-VM data sharing. Another example is data sharing
across guest VMs running on the same physical machine;
the shared memory allows multiple guest VMs, on the same
physical machine, to share the data at a substantially lower
overhead compared to TCP/IP networking, and it can con-
tribute to the performance of in-memory storage systems
such as Tra�cDB [6]. However, the shared memory, based
on the direct-mapping model, negates the isolation bene�t of
VMs, and it o�ers a signi�cant chance for an adversary, who
has successfully compromised one of the guest VMs, to attack
the other guest VMs that have the access to the same shared
memory region. The host-interposition model resolves this

😭😭
😭

13

This Work

• The two existing in-memory object sharing schemes cannot
offer isolation and low overhead at once

• We explore a new in-memory object sharing scheme which
achieves isolation at a low overhead

Exit-Less, Isolated, and Shared Access for Virtual Machines
Kenichi Yasukata

IIJ Research Laboratory
Japan

Hajime Tazaki
IIJ Research Laboratory

Japan

Pierre-Louis Aublin
IIJ Research Laboratory

Japan

ABSTRACT
This paper explores Exit-Less, Isolated, and Shared Access (ELISA),
a novel in-memory object sharing scheme for Virtual Machines
(VMs). ELISA has the isolation advantage over the shared memory
directly exposed to guest VMswhile its overhead is smaller than that
of host-interposition relying on the costly exit from the VM context.
In a nutshell, ELISA isolates shared in-memory objects by Extended
Page Table (EPT) separation, and a guest VM accesses them by
switching the EPT context using VMFUNC, a low-overhead CPU
instruction of Intel CPUs. Our experiment shows that the overhead
of ELISA is 3.5 times smaller than that of VMCALL-oriented host-
interposition. We demonstrate the bene�ts of ELISA through two
use cases; by replacing VMCALL with ELISA, a VM networking
system and an in-memory key-value store exhibit 163% and 64%
higher performance respectively.

CCS CONCEPTS
• Software and its engineering! Virtual machines.

KEYWORDS
Virtualization, Isolation, Shared Memory

ACM Reference Format:
Kenichi Yasukata, Hajime Tazaki, and Pierre-Louis Aublin. 2023. Exit-Less,
Isolated, and Shared Access for Virtual Machines. In Proceedings of the 28th
ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 3 (ASPLOS ’23), March 25–29,
2023, Vancouver, BC, Canada. ACM, New York, NY, USA, 14 pages. https:
//doi.org/10.1145/3582016.3582042

1 INTRODUCTION
Virtual Machines (VMs) are one of the most popular computation
environments. Particularly, they have been the foundation of cloud
computing infrastructures. One of the primary reasons why VMs
are widely used is their isolation property: a guest VM can access
only the resources granted by the host. In particular, memory iso-
lation is essential to guarantee that a guest VM will not access
in-memory objects (e.g., the code to be executed, the data manipu-
lated by the code, and the memory region used for Direct Memory
Access (DMA) of a physical I/O device) dedicated to the host or
other guest VMs. Nevertheless, sharing the same in-memory ob-
ject can be bene�cial, for example, to share a physical I/O device
between di�erent guest VMs.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9918-0/23/03.
https://doi.org/10.1145/3582016.3582042

Table 1: Properties of the in-memory object sharing schemes.

Description Shared access Isolation overhead
Direct-mapping No isolation None
Host-interposition Isolated High
ELISA (this work) Isolated Low

Problem statement. There are two existing in-memory object
sharing schemes for VMs: direct-mapping which directly maps the
same memory region to di�erent guest VMs, and host-interposition
where the host intermediates access to a shared in-memory object.
Both have pros and cons as shown in Table 1. Host-interposition of-
fers isolation but incurs a high overhead due to the exit from the VM
context [1]. In contrast, direct-mapping o�ers high performance
but does not provide isolation. Despite its negative performance
impact, the host-interposition model is popularly applied in virtu-
alized environments where guest VMs are untrusted and need to
be isolated from each other and from the host. The problem, this
work addresses, is the lack of an in-memory object sharing scheme
that provides both isolation and low overhead.

Motivating examples. This problem is serious in various virtu-
alization scenarios.

• Virtual I/O. For example, virtual I/O systems typically adopt
the host-interposition model and hide the DMA regions of
physical I/O devices in the trusted host context so that un-
trusted guest VMs cannot directly manipulate the physical
I/O devices. However, in the recent trend of hardware inno-
vation, a drastic improvement in CPU speed is not expected
while physical I/O devices are continuously getting faster.
Consequently, the cost of the exit from the VM context,
which appears as a CPU overhead (§ 6.1), makes it more dif-
�cult for virtual I/O systems to fully utilize the potential of
high-speed physical I/O devices; we observe that, in a highly-
optimized VM networking system called HyperNF [44], the
overhead of exiting from the VM context causes a 49% per-
formance reduction, compared to the direct-mapping model,
for I/O involving a physical NIC (§ 7.1).

• Cross-VM data sharing. Another example is data sharing
across guest VMs running on the same physical machine;
the shared memory allows multiple guest VMs, on the same
physical machine, to share the data at a substantially lower
overhead compared to TCP/IP networking, and it can con-
tribute to the performance of in-memory storage systems
such as Tra�cDB [6]. However, the shared memory, based
on the direct-mapping model, negates the isolation bene�t of
VMs, and it o�ers a signi�cant chance for an adversary, who
has successfully compromised one of the guest VMs, to attack
the other guest VMs that have the access to the same shared
memory region. The host-interposition model resolves this

😭😭
😭

14

ELISA: Exit-Less, Isolated, and Shared Access

15

ELISA: Exit-Less, Isolated, and Shared Access

• ELISA employs Extended Page Table (EPT) separation to
isolate shared in-memory objects

16

ELISA: Exit-Less, Isolated, and Shared Access

• ELISA employs Extended Page Table (EPT) separation to
isolate shared in-memory objects

• In ELISA, a VM leverages EPT Pointer (EPTP) switching
feature of VMFUNC to access the shared in-memory objects

17

ELISA: Exit-Less, Isolated, and Shared Access

• ELISA employs Extended Page Table (EPT) separation to
isolate shared in-memory objects

• In ELISA, a VM leverages EPT Pointer (EPTP) switching
feature of VMFUNC to access the shared in-memory objects

• VMFUNC is fast, thus, ELISA offers isolation at a low overhead

18

Extended Page Table (EPT)

Physical
Machine

Host Physical Memory
Address Space

DMAmap

VM

19

Extended Page Table (EPT)

Physical
Machine

Host Physical Memory
Address Space

DMAmap

EPT

Host
(Hypervisor)

Configure

VM

20

Extended Page Table (EPT)

Physical
Machine

Host Physical Memory
Address Space

DMAmap

EPT

Host
(Hypervisor)

Configure

A VM can access only to host physical
memory regions listed in its EPT

VM

21

Extended Page Table (EPT)

Physical
Machine

Host Physical Memory
Address Space

DMAmap

EPT 1

Host
(Hypervisor)

Configure

Intel CPUs allow the host to associate
multiple EPTs with a VM

EPT 2

VM

22

EPTP Switching by VMFUNC

Physical
Machine

Host Physical Memory
Address Space

DMAmap

EPT 1

Host
(Hypervisor)

Configure

VMFUNC instruction allows a VM to
switch the current active EPT

EPT 2

VM

23

EPTP Switching by VMFUNC

Physical
Machine

Host Physical Memory
Address Space

DMAmap

EPT 1

Host
(Hypervisor)

Configure

VMFUNC instruction allows a VM to
switch the current active EPT

EPT 2

VMVMFUNC

24

EPTP Switching by VMFUNC

Physical
Machine

Host Physical Memory
Address Space

map
EPT 1

Host
(Hypervisor)

Configure

VMFUNC instruction allows a VM to
switch the current active EPT

DMAEPT 2

VMVMFUNC

25

EPTP Switching by VMFUNC

Physical
Machine

Host Physical Memory
Address Space

map
EPT 1

Host
(Hypervisor)

Configure

VMFUNC instruction allows a VM to
switch the current active EPT

DMAEPT 2

Point 1
These two regions are

isolated from each other
by EPT separation

VMVMFUNC

26

EPTP Switching by VMFUNC

Physical
Machine

Host Physical Memory
Address Space

map
EPT 1

Host
(Hypervisor)

Configure

VMFUNC instruction allows a VM to
switch the current active EPT

DMAEPT 2

Point 1
These two regions are

isolated from each other
by EPT separation

VMVMFUNC

27

Point 2
VMFUNC does not cause an
exit, thus, it is low overhead
(5.3x faster than VMCALL)

ELISA: Exit-Less, Isolated, and Shared Access

Physical
Machine

Host Physical Memory
Address Space

EPT 1

EPT 1

EPT 1

DMAEPT 2

EPT 2

EPT 2

VM

VM

VM

28

Threat Model

Physical
Machine

Host Physical Memory
Address Space

EPT 1

EPT 1

EPT 1

DMAEPT 2

EPT 2

EPT 2

Un
tru
ste
d

Un
tru
ste
d

Un
tru
ste
d

Tru
ste
d

VM

VM

VM

29

Threat Model

Physical
Machine

Host Physical Memory
Address Space

EPT 1

EPT 1

EPT 1

DMAEPT 2

EPT 2

EPT 2

Un
tru
ste
d

Un
tru
ste
d

Un
tru
ste
d

Tru
ste
d

VM

VM

VM

30

- shared in-memory objects
- code (trusted)

ELISA: Access to a Shared Object

Physical
Machine

Host Physical Memory
Address Space

EPT 1

EPT 1

EPT 1

DMAEPT 2

EPT 2

EPT 2

Un
tru
ste
d

Un
tru
ste
d

Un
tru
ste
d

Tru
ste
d

VM

VM

VM

31

- shared in-memory objects
- code (trusted)

ELISA: Access to a Shared Object

Physical
Machine

Host Physical Memory
Address Space

EPT 1

EPT 1

EPT 1

DMAEPT 2

EPT 2

EPT 2

Un
tru
ste
d

Un
tru
ste
d

Un
tru
ste
d

Tru
ste
d

VM

VM

VM

VMFUNC

32

- shared in-memory objects
- code (trusted)

ELISA: Access to a Shared Object

Physical
Machine

Host Physical Memory
Address Space

EPT 1

EPT 1

DMA

EPT 2

EPT 2

map
EPT 1

EPT 2

Un
tru
ste
d

Un
tru
ste
d

Un
tru
ste
d

Tru
ste
d

33

VM

VM

VM

- shared in-memory objects
- code (trusted)

ELISA: Access to a Shared Object

Physical
Machine

Host Physical Memory
Address Space

EPT 1

EPT 1

DMA

EPT 2

EPT 2

map
EPT 1

EPT 2

Un
tru
ste
d

Un
tru
ste
d

Un
tru
ste
d

Tru
ste
d

VM

VM

VM

VMFUNC

34

- shared in-memory objects
- code (trusted)

ELISA: Access to a Shared Object

Physical
Machine

Host Physical Memory
Address Space

EPT 1

EPT 1

DMA

EPT 2

EPT 2

map
EPT 1

EPT 2
map

Un
tru
ste
d

Un
tru
ste
d

Un
tru
ste
d

Tru
ste
d

VM

VM

VM

35

VMFUNC - shared in-memory objects
- code (trusted)

ELISA: Access to a Shared Object

Physical
Machine

Host Physical Memory
Address Space

EPT 1

EPT 1

DMA

EPT 2

EPT 2

map
EPT 1

EPT 2
map

Un
tru
ste
d

Un
tru
ste
d

Un
tru
ste
d

Tru
ste
d

VM

VM

VM

36

- shared in-memory objects
- code (trusted)

ELISA: Access to a Shared Object

Physical
Machine

Host Physical Memory
Address Space

EPT 1

EPT 1

DMA

EPT 2

EPT 2

map
EPT 1

EPT 2
map

Un
tru
ste
d

Un
tru
ste
d

Un
tru
ste
d

Tru
ste
d

VM

VM

VMVMFUNC

37

- shared in-memory objects
- code (trusted)

ELISA: Access to a Shared Object

Physical
Machine

Host Physical Memory
Address Space

EPT 1

EPT 1

DMA

EPT 2

EPT 2

map
EPT 1

EPT 2
map

Un
tru
ste
d

Un
tru
ste
d

Un
tru
ste
d

Tru
ste
d

map

VM

VM

VM

38

- shared in-memory objects
- code (trusted)

ELISA: Access to a Shared Object

Physical
Machine

Host Physical Memory
Address Space

EPT 1

EPT 1

DMA

EPT 2

EPT 2

map
EPT 1

EPT 2
map

Un
tru
ste
d

Un
tru
ste
d

Un
tru
ste
d

Tru
ste
d

map

VM

VM

VM

39

- shared in-memory objects
- code (trusted)

ELISA: Access to a Shared Object

Physical
Machine

Host Physical Memory
Address Space

EPT 1

EPT 1

DMA

EPT 2

EPT 2

map
EPT 1

EPT 2
map

Un
tru
ste
d

Un
tru
ste
d

Un
tru
ste
d

Tru
ste
d

map

VM

VM

VM

40

- shared in-memory objects
- code (trusted) => in charge
of concurrency coordination
(e.g., using spinlocks)

ELISA: Access to a Shared Object

Physical
Machine

Host Physical Memory
Address Space

EPT 1

EPT 1

DMA

EPT 2

EPT 2

map
EPT 1

EPT 2
map

Un
tru
ste
d

Un
tru
ste
d

Un
tru
ste
d

Tru
ste
d

map

VM

VM

VM

41

- shared in-memory objects
- code (trusted) => in charge
of concurrency coordination
(e.g., using spinlocks)

ELISA: Access to a Shared Object

Physical
Machine

Host Physical Memory
Address Space

EPT 1

EPT 1

DMA

EPT 2

EPT 2

map

Un
tru
ste
d

Un
tru
ste
d

Un
tru
ste
d

Tru
ste
d

map

EPT 1

EPT 2

VM

VM

VM

VMFUNC

42

- shared in-memory objects
- code (trusted) => in charge
of concurrency coordination
(e.g., using spinlocks)

ELISA: Access to a Shared Object

Physical
Machine

Host Physical Memory
Address Space

EPT 1

EPT 1

DMA

EPT 2

EPT 2

map

Un
tru
ste
d

Un
tru
ste
d

Un
tru
ste
d

Tru
ste
d

map

EPT 1

EPT 2

VM

VM

VM

43

- shared in-memory objects
- code (trusted) => in charge
of concurrency coordination
(e.g., using spinlocks)

ELISA: Access to a Shared Object

Physical
Machine

Host Physical Memory
Address Space

EPT 1

EPT 1

DMA

EPT 2

EPT 2

map

Un
tru
ste
d

Un
tru
ste
d

Un
tru
ste
d

Tru
ste
d

map

EPT 1

EPT 2

VM

VM

VM

44

- shared in-memory objects
- code (trusted) => in charge
of concurrency coordination
(e.g., using spinlocks)

Point 1
The shared in-memory object is

isolated from the untrusted code

ELISA: Access to a Shared Object

Physical
Machine

Host Physical Memory
Address Space

EPT 1

EPT 1

DMA

EPT 2

EPT 2

map

Un
tru
ste
d

Un
tru
ste
d

Un
tru
ste
d

Tru
ste
d

map

EPT 1

EPT 2

VM

VM

VM

45

- shared in-memory objects
- code (trusted) => in charge
of concurrency coordination
(e.g., using spinlocks)

Point 1
The shared in-memory object is

isolated from the untrusted code

Point 2
VMs use VMFUNC to access
the shared in-memory object,
thus, ELISA is low overhead

Contributions of the Paper

46

Contributions of the Paper

• Challenging issues

47

Contributions of the Paper

• Challenging issues
• Issue: page table maintenance overhead to keep page tables at the

same Guest Physical Address in default and non-default EPT contexts
è Solution: Anywhere Page Table (APT)

48

Contributions of the Paper

• Challenging issues
• Issue: page table maintenance overhead to keep page tables at the

same Guest Physical Address in default and non-default EPT contexts
è Solution: Anywhere Page Table (APT)

• Issue: potential attack enabled by the combination of VMFUNC and
untrusted guest kernels
è Solution: gate EPT context

49

Contributions of the Paper

• Challenging issues
• Issue: page table maintenance overhead to keep page tables at the

same Guest Physical Address in default and non-default EPT contexts
è Solution: Anywhere Page Table (APT)

• Issue: potential attack enabled by the combination of VMFUNC and
untrusted guest kernels
è Solution: gate EPT context

• Flexible programming model

50

Contributions of the Paper

• Challenging issues
• Issue: page table maintenance overhead to keep page tables at the

same Guest Physical Address in default and non-default EPT contexts
è Solution: Anywhere Page Table (APT)

• Issue: potential attack enabled by the combination of VMFUNC and
untrusted guest kernels
è Solution: gate EPT context

• Flexible programming model

Please refer to the paper for details
51

Context Switch Overhead (VMCALL)

Physical
Machine

Host Physical Memory
Address Space

DMA

Host
(Hypervisor)

VM

52

Context Switch Overhead (VMCALL)

Physical
Machine

Host Physical Memory
Address Space

DMA

Host
(Hypervisor)

Request
VMCALL

VM
exit

53

Context Switch Overhead (VMCALL)

Physical
Machine

Host Physical Memory
Address Space

DMA

Host
(Hypervisor)

Request
VMCALL

VM

54

Context Switch Overhead (VMCALL)

Physical
Machine

Host Physical Memory
Address Space

DMA

Host
(Hypervisor)

Return
VMCALL

VM

55

Context Switch Overhead (VMCALL)

Physical
Machine

Host Physical Memory
Address Space

DMA

Host
(Hypervisor)

Return
VMCALL

Description Time [ns]
VMCALL 699

699 ns
VM

56

Context Switch Overhead (ELISA)

Physical
Machine

Host Physical Memory
Address Space

EPT 1
DMAmapEPT 2

Description Time [ns]
VMCALL 699

VM

57

Context Switch Overhead (ELISA)

Physical
Machine

Host Physical Memory
Address Space

EPT 1
DMAmapEPT 2

Description Time [ns]
VMCALL 699

VMVMFUNC

58

Context Switch Overhead (ELISA)

Physical
Machine

Host Physical Memory
Address Space

map
EPT 1

DMAEPT 2

Description Time [ns]
VMCALL 699

VM

59

Context Switch Overhead (ELISA)

Physical
Machine

Host Physical Memory
Address Space

map
EPT 1

DMAEPT 2

Description Time [ns]
VMCALL 699

VMVMFUNC

60

Context Switch Overhead (ELISA)

Physical
Machine

Host Physical Memory
Address Space

EPT 1
DMAmapEPT 2

VM

61

Description Time [ns]
VMCALL 699

Context Switch Overhead (ELISA)

Physical
Machine

Host Physical Memory
Address Space

EPT 1
DMAmapEPT 2

Description Time [ns]
VMCALL 699
ELISA 196

196 ns
VM

62

Context Switch Overhead (ELISA)

Physical
Machine

Host Physical Memory
Address Space

EPT 1
DMAmapEPT 2

Description Time [ns]
VMCALL 699
ELISA 196

196 ns

ELISA is 3.5 times faster
than VMCALL-based

host-interposition

VM

63

Context Switch Overhead (ELISA)

Physical
Machine

Host Physical Memory
Address Space

EPT 1
DMAmapEPT 2

Description Time [ns]
VMCALL 699
ELISA 196

196 ns

ELISA is 3.5 times faster
than VMCALL-based

host-interposition

VM

64

This speedup is beneficial for
applications frequently access
the shared in-memory object

Context Switch Overhead (ELISA)

Physical
Machine

Host Physical Memory
Address Space

EPT 1
DMAmapEPT 2

Description Time [ns]
VMCALL 699
ELISA 196

196 ns

ELISA is 3.5 times faster
than VMCALL-based

host-interposition

VM

65

This speedup is beneficial for
applications frequently access
the shared in-memory object

e.g., virtual I/O systems

VM Networking by Host-interposition

Physical
Machine

Host Physical Memory
Address Space

DMA

Host
(Hypervisor)

VM

VM

VM

66

NIC

VM Networking by Host-interposition

Physical
Machine

Host Physical Memory
Address Space

DMA

Host
(Hypervisor)

VM

VM

VM

67

NIC

vSwitch

VM Networking by Host-interposition

Physical
Machine

Host Physical Memory
Address Space

DMA

Host
(Hypervisor)

VM

VM

VM

68

NIC

vSwitch

VM Networking by Host-interposition

Physical
Machine

Host Physical Memory
Address Space

DMA

Host
(Hypervisor)

VM

VM

VM

69

Request

exit

NIC

vSwitch

VM Networking by Host-interposition

Physical
Machine

Host Physical Memory
Address Space

DMA

Host
(Hypervisor)

VM

VM

VM

70

NIC

vSwitch

VM Networking by Host-interposition

Physical
Machine

Host Physical Memory
Address Space

DMA

Host
(Hypervisor)

VM

VM

VM

71

Access

NIC

vSwitch

VM Networking by Host-interposition

Physical
Machine

Host Physical Memory
Address Space

DMA

Host
(Hypervisor)

VM

VM

VM

72

NIC

vSwitch

VM Networking by Host-interposition

Physical
Machine

Host Physical Memory
Address Space

DMA

Host
(Hypervisor)

VM

VM

VM

73

Return

NIC

vSwitch

ELISA-based VM Networking System

Physical
Machine

Host Physical Memory
Address Space

EPT 1

EPT 1

EPT 1

DMAEPT 2

EPT 2

EPT 2

NIC
VM

VM

VM

74

ELISA-based VM Networking System

Physical
Machine

Host Physical Memory
Address Space

EPT 1

EPT 1

EPT 1

DMAEPT 2

EPT 2

EPT 2

NIC
vSwitchVM

VM

VM

75

ELISA-based VM Networking System

Physical
Machine

Host Physical Memory
Address Space

EPT 1

EPT 1

EPT 1

DMAEPT 2

EPT 2

EPT 2

NIC
vSwitchVM

VM

VM

VMFUNC

76

ELISA-based VM Networking System

Physical
Machine

Host Physical Memory
Address Space

EPT 1

EPT 1

DMA

EPT 2

EPT 2

map
EPT 1

EPT 2

NIC
vSwitchVM

VM

VM

77

ELISA-based VM Networking System

Physical
Machine

Host Physical Memory
Address Space

EPT 1

EPT 1

DMA

EPT 2

EPT 2

map
EPT 1

EPT 2

NIC Packet I/OvSwitchVM

VM

VM

78

ELISA-based VM Networking System

Physical
Machine

Host Physical Memory
Address Space

EPT 1

EPT 1

DMA

EPT 2

EPT 2

map
EPT 1

EPT 2

NIC
vSwitchVM

VM

VM

VMFUNC

Packet I/O

79

ELISA-based VM Networking System

Physical
Machine

Host Physical Memory
Address Space

EPT 1

EPT 1

DMA

EPT 2

EPT 2

map
EPT 1

EPT 2
map

NIC
vSwitchVM

VM

VM

Packet I/O

80

ELISA-based VM Networking System

Physical
Machine

Host Physical Memory
Address Space

EPT 1

EPT 1

DMA

EPT 2

EPT 2

map
EPT 1

EPT 2
map

NIC
vSwitchVM

VM

VM

Packet I/O

81

ELISA-based VM Networking System

Physical
Machine

Host Physical Memory
Address Space

EPT 1

EPT 1

DMA

EPT 2

EPT 2

map
EPT 1

EPT 2
map

NIC
vSwitch

RX over a 10 Gbps NIC

54% better than VMCALL

 0

 2

 4

 6

 8

 10

 12

 14

 16

64 128 256 512 1024 1472

T
h

ro
u

g
h

p
u

t
[M

p
p

s]
Packet Size [byte]

ivshmem
VMCALL
ELISA
vhost-net
SR-IOV

VM

VM

VM

82

Packet I/O

ELISA-based VM Networking System

Physical
Machine

Host Physical Memory
Address Space

EPT 1

EPT 1

DMA

EPT 2

EPT 2

map
EPT 1

EPT 2
map

NIC
vSwitch

TX over a 10 Gbps NIC

 0

 2

 4

 6

 8

 10

 12

 14

 16

64 128 256 512 1024 1472

T
h
ro

u
g
h
p
u
t
[M

p
p
s]

Packet Size [byte]

49% better than VMCALL

Exit-Less, Isolated, and Shared Access for Virtual Machines ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

 0

 2

 4

 6

 8

 10

 12

 14

 16

64 128 256 512 1024 1472

T
h

ro
u

g
h

p
u

t
[M

p
p

s]

Packet Size [byte]

ivshmem
VMCALL
ELISA
vhost-net
SR-IOV

(a) VM RX over a physical NIC

 0

 2

 4

 6

 8

 10

 12

 14

 16

64 128 256 512 1024 1472

T
h

ro
u

g
h

p
u

t
[M

p
p

s]

Packet Size [byte]

(b) VM TX over a physical NIC

 0

 2

 4

 6

 8

 10

 12

 14

 16

64 128 256 512 1024 1472

T
h

ro
u

g
h

p
u

t
[M

p
p

s]

Packet Size [byte]

(c) Inter-VM communication

Figure 9: VM networking system performance.

using the hardware described in § 6. The ivshmem, VMCALL, and
ELISA cases use the same codebase of the VM networking system;
this is possible because the core logic of it is implemented as the
shared library (§ 5.4). In the ivshmem case, the I/O bu�ers of all
vNICs and the DMA region of a physical NIC are directly mapped
to the default EPT contexts of all guest VMs belonging to the same
group of the virtual switch; the guest VMs perform I/O over their
own vNICs by executing the virtual switch code in user-space of
the guest VMs. We note that while the ivshmem setup is faster
than VMCALL and ELISA, it is not practical because an untrusted
guest VM can directly access the I/O bu�ers of vNICs belonging
to other guest VMs and the DMA region of the physical NIC. In
the VMCALL case, the I/O bu�ers of a vNIC are exposed only to its
owner guest VM, and the DMA region of a physical NIC is hidden in
the host kernel context; the guest VMs perform VMCALL to enter
the host to execute the virtual switch logic that forwards packets
between the associated NICs, and this behavior is identical to that

of HyperNF [44], a high-performance VM networking system that
locates a VALE/mSwitch-based forwarding plane in the hypervisor
and employs the hypercall/VMCALLmechanism as the interface for
guest VMs to perform packet I/O. We conduct the same benchmarks
on vhost-net backed by a Linux bridge, one of the most common
and performant VM networking setups in Linux, and SR-IOV that
is implemented in the NIC hardware. Note that the measurements
on vhost-net and SR-IOV are for reference purposes, meaning that
comparing vhost-net and SR-IOV against the other three cases is
not fair; the vhost-net case falls short of the other cases because
of the implementation of the virtual switch, and the SR-IOV case
outperforms the others because its forwarding plane is implemented
by hardware. For the benchmark, we use the testpmd (Test Poll
Mode Driver) application which is distributed as part of DPDK to
transmit and receive packets as fast as possible. In the ivshmem,
VMCALL, and ELISA cases, we use the DPDK driver for the ELISA-
based vNIC, and the vhost-net and SR-IOV cases use the virtio
and SR-IOV drivers that are distributed with the DPDK library. We
measured the communication throughput between a VM and an
external physical machine over the physical NICs, and between
two VMs on the same physical machine, by counting the number
of packets observed on the receiver side. We con�gure the testpmd
application to use a single vCPU core for its application workload
including packet I/O. Figure 9a and Figure 9b report the RX and TX
throughput over a physical NIC in the million packets per second
scale (Mpps); ELISA outperforms VMCALL by 54% and 49% at
maximum for RX and TX respectively. The better throughput of
ELISA derives from its lower context switch overhead compared
to VMCALL (§ 6.1). When the packet size is big, the throughput
gaps among all cases become small because of the bandwidth limit
of the physical NIC. In the inter-VM communication case, shown
in Figure 9c, the physical NIC is not involved and does not limit
the throughput; as a result, the ELISA case exhibits 39~163% better
throughput than the VMCALL case.

Application performance.We examine the performance of ap-
plications running on the VM networking system. For benchmark-
ing, we choose two network-intensive workloads: an HTTP server
and a memcached [41] server. We use the HTTP and memcached
server implementations which are distributed as part of Seastar [37],
a high-performance user-space network stack deployed in produc-
tion environments. Seastar employs DPDK for packet I/O, there-
fore, Seastar can leverage the same set of DPDK drivers used in
the testpmd experiment above. We run the Seastar-based HTTP
and memcached servers on a VM whose setup is the same as the
one used in the testpmd experiment. As the benchmark clients, an
external physical machine runs wrk2 [8, 38] for the HTTP server
workload and mutilate [23] for the memcached server workload.
wrk2 fetches the default landing page of the Seastar-based HTTP
server and mutilate runs a GET 100% workload; 100~191-byte and
60~90-byte TCP packets are exchanged between the server and
client processes in the HTTP and memcached server workloads
respectively. For both HTTP and memcached experiments, we use
64 concurrent persistent TCP connections to send requests and grad-
ually increase the o�ered throughput until reaching the throughput
limit of each case. In Figure 10, each data point reports the 99th
percentile latency along with the observed throughput result. In the
HTTP server experiment, at 175 K requests per second throughput,

VM

VM

VM

Packet I/O

83

ELISA-based VM Networking System

Physical
Machine

Host Physical Memory
Address Space

EPT 1

EPT 1

DMA

EPT 2

EPT 2

map
EPT 1

EPT 2
map

NIC
vSwitch

Inter-VM communication

 0

 2

 4

 6

 8

 10

 12

 14

 16

64 128 256 512 1024 1472

T
h
ro

u
g
h
p
u
t
[M

p
p
s]

Packet Size [byte]

163% better than VMCALL

Exit-Less, Isolated, and Shared Access for Virtual Machines ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

 0

 2

 4

 6

 8

 10

 12

 14

 16

64 128 256 512 1024 1472

T
h

ro
u

g
h

p
u

t
[M

p
p

s]

Packet Size [byte]

ivshmem
VMCALL
ELISA
vhost-net
SR-IOV

(a) VM RX over a physical NIC

 0

 2

 4

 6

 8

 10

 12

 14

 16

64 128 256 512 1024 1472

T
h

ro
u

g
h

p
u

t
[M

p
p

s]

Packet Size [byte]

(b) VM TX over a physical NIC

 0

 2

 4

 6

 8

 10

 12

 14

 16

64 128 256 512 1024 1472

T
h

ro
u

g
h

p
u

t
[M

p
p

s]

Packet Size [byte]

(c) Inter-VM communication

Figure 9: VM networking system performance.

using the hardware described in § 6. The ivshmem, VMCALL, and
ELISA cases use the same codebase of the VM networking system;
this is possible because the core logic of it is implemented as the
shared library (§ 5.4). In the ivshmem case, the I/O bu�ers of all
vNICs and the DMA region of a physical NIC are directly mapped
to the default EPT contexts of all guest VMs belonging to the same
group of the virtual switch; the guest VMs perform I/O over their
own vNICs by executing the virtual switch code in user-space of
the guest VMs. We note that while the ivshmem setup is faster
than VMCALL and ELISA, it is not practical because an untrusted
guest VM can directly access the I/O bu�ers of vNICs belonging
to other guest VMs and the DMA region of the physical NIC. In
the VMCALL case, the I/O bu�ers of a vNIC are exposed only to its
owner guest VM, and the DMA region of a physical NIC is hidden in
the host kernel context; the guest VMs perform VMCALL to enter
the host to execute the virtual switch logic that forwards packets
between the associated NICs, and this behavior is identical to that

of HyperNF [44], a high-performance VM networking system that
locates a VALE/mSwitch-based forwarding plane in the hypervisor
and employs the hypercall/VMCALLmechanism as the interface for
guest VMs to perform packet I/O. We conduct the same benchmarks
on vhost-net backed by a Linux bridge, one of the most common
and performant VM networking setups in Linux, and SR-IOV that
is implemented in the NIC hardware. Note that the measurements
on vhost-net and SR-IOV are for reference purposes, meaning that
comparing vhost-net and SR-IOV against the other three cases is
not fair; the vhost-net case falls short of the other cases because
of the implementation of the virtual switch, and the SR-IOV case
outperforms the others because its forwarding plane is implemented
by hardware. For the benchmark, we use the testpmd (Test Poll
Mode Driver) application which is distributed as part of DPDK to
transmit and receive packets as fast as possible. In the ivshmem,
VMCALL, and ELISA cases, we use the DPDK driver for the ELISA-
based vNIC, and the vhost-net and SR-IOV cases use the virtio
and SR-IOV drivers that are distributed with the DPDK library. We
measured the communication throughput between a VM and an
external physical machine over the physical NICs, and between
two VMs on the same physical machine, by counting the number
of packets observed on the receiver side. We con�gure the testpmd
application to use a single vCPU core for its application workload
including packet I/O. Figure 9a and Figure 9b report the RX and TX
throughput over a physical NIC in the million packets per second
scale (Mpps); ELISA outperforms VMCALL by 54% and 49% at
maximum for RX and TX respectively. The better throughput of
ELISA derives from its lower context switch overhead compared
to VMCALL (§ 6.1). When the packet size is big, the throughput
gaps among all cases become small because of the bandwidth limit
of the physical NIC. In the inter-VM communication case, shown
in Figure 9c, the physical NIC is not involved and does not limit
the throughput; as a result, the ELISA case exhibits 39~163% better
throughput than the VMCALL case.

Application performance.We examine the performance of ap-
plications running on the VM networking system. For benchmark-
ing, we choose two network-intensive workloads: an HTTP server
and a memcached [41] server. We use the HTTP and memcached
server implementations which are distributed as part of Seastar [37],
a high-performance user-space network stack deployed in produc-
tion environments. Seastar employs DPDK for packet I/O, there-
fore, Seastar can leverage the same set of DPDK drivers used in
the testpmd experiment above. We run the Seastar-based HTTP
and memcached servers on a VM whose setup is the same as the
one used in the testpmd experiment. As the benchmark clients, an
external physical machine runs wrk2 [8, 38] for the HTTP server
workload and mutilate [23] for the memcached server workload.
wrk2 fetches the default landing page of the Seastar-based HTTP
server and mutilate runs a GET 100% workload; 100~191-byte and
60~90-byte TCP packets are exchanged between the server and
client processes in the HTTP and memcached server workloads
respectively. For both HTTP and memcached experiments, we use
64 concurrent persistent TCP connections to send requests and grad-
ually increase the o�ered throughput until reaching the throughput
limit of each case. In Figure 10, each data point reports the 99th
percentile latency along with the observed throughput result. In the
HTTP server experiment, at 175 K requests per second throughput,

VM

VM

VM

Packet I/O

84

ELISA-based VM Networking System

Physical
Machine

Host Physical Memory
Address Space

EPT 1

EPT 1

DMA

EPT 2

EPT 2

map
EPT 1

EPT 2

NIC
vSwitch

Seastar-based
memcached

Seastar-based memcached

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300 350 400 450 500

9
9

th
 %

ile
 L

a
te

n
cy

 [
u

s]

Throughput [K requests/sec]

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 50 100 150 200 250

9
9

th
 %

ile
 L

a
te

n
cy

 [
u

s]

Throughput [K requests/sec]

ivshmem
VMCALL
ELISA
vhost-net
SR-IOV

44% lower latency than VMCALL

VM

VM

VM

Packet I/O

85

Summary

• ELISA is an in-memory object sharing scheme for VMs

• ELISA employs EPT separation and VMFUNC to achieve
isolation at a low overhead

86

87

Thank you for your listening

Questions?

SR-IOV

Physical
Machine

Host Physical Memory
Address Space

DMA

VM

VM

VM

DMA

DMA

DMA

vSwitch

88

Page Table Maintenance Overhead

89

GPA space

Anywhere Page Table (APT)

90

defaXlt
EPT

conte[t

root

non-defaXlt
EPT

conte[t

root
root

root
root

other

other

GPA space HPA space

root

other

other

GPA-HPA
mapping

......

...

...

...

...

...

...

...

4 KB page

9MF8NC

CR3

gXest kernel

co
nÀ

gX
re

Potential Attack

9MF8NC

call fXncWion

fXncWion

...

UeWXUn

9MF8NC

9MF8NC

...

defaXlW
EPT

conWe[W

non-defaXlW
EPT

conWe[W

aVVXmed
enWU\
SoinW

inYalid
enWU\
SoinW

...

91

Gate EPT Context

92

4
KB

 S
ag

e

9MF8NC

9MF8NC
edit EPTP list

call function

EPTP OiVW

defXOW
EPT

cRQWe[W

gaWe
EPT

cRQWe[W

VXb
EPT

cRQWe[W

EPTP OiVW

edit EPTP list

9MF8NC

VeW Whe EPTP fRU
Whe VXb EPT cRQWe[W

WR Whe EPTP OiVW
UePRYe Whe EPTP fRU
Whe VXb EPT cRQWe[W
fURP Whe EPTP OiVW

Comparison

93

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Kenichi Yasukata, Hajime Tazaki, and Pierre-Louis Aublin

9MF8NC

call fXncWion

fXncWion

...

UeWXUn

9MF8NC

9MF8NC

...

defaXlW
EPT

conWe[W

non-defaXlW
EPT

conWe[W

aVVXmed
enWU\
SoinW

inYalid
enWU\
SoinW

...

Figure 3: How to bypass the assumed entry point in a naïvely
designed VMFUNC-based isolation system. Each block’s po-
sition indicates the location of the code in the GVA space.

operation. Here, we report the measurement results that con�rm
their signi�cance.

• Overhead to trap CR3 access. Typically, the penalty for
trapping the CR3 access is experienced in the modern kernels
adopting Kernel Page Table Isolation (KPTI) which is the
measure against the Meltdown [25] attack; the page table of
the kernel is separated from user-space programs and the
CR3 register is updated for every system call. To see the cost
to trap the CR3 access, we measured the execution time of
getpid, a lightweight system call, on a guest VM running on
the machine described in § 6. By default, it takes 533 ns for
a getpid execution, however, the getpid execution time is
increased to 14312 ns when we activate the trap for the CR3
access by setting CR3_LOAD_EXITING in the VMCS �eld.
Here, we observe a 26 times slowdown due to the overhead
to trap the CR3 access.

• Overhead of CR3 updates. To understand how much over-
head is added if the CR3 update is involved for every EPTP
switching, we made a small kernel module; it implements the
ioctl system call through the character device interface, and
the ioctl implementation conducts the round-trip between
two EPT contexts using VMFUNC. If CR3 is not updated
for every EPTP switching, it takes 855 ns for a user-space
process to execute the ioctl system call. On the other hand,
when the CR3 vCPU register is updated at the entry and exit
of a non-default EPT context, it takes 1660 ns for an ioctl
execution. So, the overhead of the CR3 updates is 805 ns.

3.2 Defence against a Potential Attack
The EPTP switching feature of VMFUNC just switches the EPTP,
and it does not change the value of the instruction pointer; this
means that VMFUNC’s EPTP switching feature itself does not en-
sure that the execution is redirected to a valid entry point. Because

Table 2: Properties of VMFUNC-based systems. Shaded parts
indicate the desired properties.

System Guest kernels
Page table

maintenance
overhead

CrossOver [24] Trusted Low
SeCage [26] Untrusted High
MemSentry [21] Trusted Low
EPTI [15] Untrusted High
SkyBridge [29] Trusted Low
Hodor-VMFUNC [13] Trusted Low
LVDs [30] Untrusted High
CloudVisor-D [28] Untrusted High
EPK [10] Trusted Low
ELISA (this work) Untrusted Low

of this issue, when a VMFUNC-based isolation system is naïvely de-
signed, malicious guest kernels can bypass the assumed entry point
by exploiting the page table in the default EPT context. Figure 3
illustrates how the attack works. The isolation system maintains
a page table for the non-default EPT context; this page table is
independent of the one in the default EPT context. The isolation
system assumes that the guest VM executes VMFUNC on a par-
ticular GVA to enter the non-default EPT context. However, it is
possible for the guest VM, in the default EPT context, to create an
invalid entry point at any GVA by putting a VMFUNC instruction
on an arbitrary GPA and making the desired GVA-GPA mapping
in the page table. In short, a guest VM having control of the page
table and CR3 vCPU register can put VMFUNC at any GVA in the
default EPT context. The problem occurs when the guest VM, in
the default EPT context, executes VMFUNC on a GVA which is
in the middle of the code in the non-default EPT context; by ex-
ploiting this, an attacker can bypass the assumed entry point. The
consequence of the attack is, for example, a malicious guest VM
can bypass the permission checks implemented in the non-default
EPT context. To prevent this attack, the previous studies trap the
CR3 and page table access, attempted by a guest VM, to conduct
intensive checks for the GVA-GPA mapping made by the untrusted
guest kernel [15, 26, 30] or enforce the guest VM to update CR3
by itself to realize the designated entry point [28]. However, as
measured in § 3.1, these approaches impose performance penalties
on guest VMs, therefore, we need a new e�cient mechanism.

3.3 Existing VMFUNC-Based Systems
There is a series of previous VMFUNC studies [10, 13, 15, 21, 24, 26,
28–30] as shown in Table 2. However, we cannot directly reuse the
previously proposed isolation primitives because none of them are
free from the costly page table maintenance overhead (§ 3.1) while
assuming the guest kernels are untrusted (§ 2.3).

Untrusted guest kernels. For CrossOver [24], MemSentry [21],
SkyBridge [29], Hodor-VMFUNC [13], and EPK [10], the guest
kernels are the trusted domain. Consequently, their isolation does
not consider the attack described in § 3.2, thus, we cannot apply
their isolation primitives for ELISA.

227

