
Exit-Less, Isolated, and Shared Access
for Virtual Machines

Kenichi Yasukata, Hajime Tazaki, Pierre-Louis Aublin

ASPLOS 2023 – Vancouver, Canada – 29th March

Lightning Talk Video



Background



Background

• VMs are one of the most popular computing environments



Background

• VMs are one of the most popular computing environments

• Memory isolation is an important feature of VMs



Background

• VMs are one of the most popular computing environments

• Memory isolation is an important feature of VMs

• But, VMs sometimes need to access the same memory region



Background

• VMs are one of the most popular computing environments

• Memory isolation is an important feature of VMs

• But, VMs sometimes need to access the same memory region

• For example, to share DMA-capable I/O devices



Problem Statement



Problem Statement

cRde

gXeVW VM

maS

RbMecW

RbMecW

acceVV
cRde

gXeVW VM

RbMecW

maS

acceVV

KRVW

Direct-mapping



Problem Statement

cRde

gXeVW VM

maS

RbMecW

RbMecW

acceVV
cRde

gXeVW VM

RbMecW

maS

acceVV

KRVW

Direct-mapping



Problem Statement

cRde

gXeVW VM

maS

RbMecW

RbMecW

acceVV
cRde

gXeVW VM

RbMecW

maS

acceVV

KRVW

Direct-mapping
Exit-Less, Isolated, and Shared Access for Virtual Machines

Kenichi Yasukata
IIJ Research Laboratory

Japan

Hajime Tazaki
IIJ Research Laboratory

Japan

Pierre-Louis Aublin
IIJ Research Laboratory

Japan

ABSTRACT
This paper explores Exit-Less, Isolated, and Shared Access (ELISA),
a novel in-memory object sharing scheme for Virtual Machines
(VMs). ELISA has the isolation advantage over the shared memory
directly exposed to guest VMswhile its overhead is smaller than that
of host-interposition relying on the costly exit from the VM context.
In a nutshell, ELISA isolates shared in-memory objects by Extended
Page Table (EPT) separation, and a guest VM accesses them by
switching the EPT context using VMFUNC, a low-overhead CPU
instruction of Intel CPUs. Our experiment shows that the overhead
of ELISA is 3.5 times smaller than that of VMCALL-oriented host-
interposition. We demonstrate the bene�ts of ELISA through two
use cases; by replacing VMCALL with ELISA, a VM networking
system and an in-memory key-value store exhibit 163% and 64%
higher performance respectively.

CCS CONCEPTS
• Software and its engineering! Virtual machines.

KEYWORDS
Virtualization, Isolation, Shared Memory

ACM Reference Format:
Kenichi Yasukata, Hajime Tazaki, and Pierre-Louis Aublin. 2023. Exit-Less,
Isolated, and Shared Access for Virtual Machines. In Proceedings of the 28th
ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 3 (ASPLOS ’23), March 25–29,
2023, Vancouver, BC, Canada. ACM, New York, NY, USA, 14 pages. https:
//doi.org/10.1145/3582016.3582042

1 INTRODUCTION
Virtual Machines (VMs) are one of the most popular computation
environments. Particularly, they have been the foundation of cloud
computing infrastructures. One of the primary reasons why VMs
are widely used is their isolation property: a guest VM can access
only the resources granted by the host. In particular, memory iso-
lation is essential to guarantee that a guest VM will not access
in-memory objects (e.g., the code to be executed, the data manipu-
lated by the code, and the memory region used for Direct Memory
Access (DMA) of a physical I/O device) dedicated to the host or
other guest VMs. Nevertheless, sharing the same in-memory ob-
ject can be bene�cial, for example, to share a physical I/O device
between di�erent guest VMs.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9918-0/23/03.
https://doi.org/10.1145/3582016.3582042

Table 1: Properties of the in-memory object sharing schemes.

Description Shared access Isolation overhead
Direct-mapping No isolation None
Host-interposition Isolated High
ELISA (this work) Isolated Low

Problem statement. There are two existing in-memory object
sharing schemes for VMs: direct-mapping which directly maps the
same memory region to di�erent guest VMs, and host-interposition
where the host intermediates access to a shared in-memory object.
Both have pros and cons as shown in Table 1. Host-interposition of-
fers isolation but incurs a high overhead due to the exit from the VM
context [1]. In contrast, direct-mapping o�ers high performance
but does not provide isolation. Despite its negative performance
impact, the host-interposition model is popularly applied in virtu-
alized environments where guest VMs are untrusted and need to
be isolated from each other and from the host. The problem, this
work addresses, is the lack of an in-memory object sharing scheme
that provides both isolation and low overhead.

Motivating examples. This problem is serious in various virtu-
alization scenarios.

• Virtual I/O. For example, virtual I/O systems typically adopt
the host-interposition model and hide the DMA regions of
physical I/O devices in the trusted host context so that un-
trusted guest VMs cannot directly manipulate the physical
I/O devices. However, in the recent trend of hardware inno-
vation, a drastic improvement in CPU speed is not expected
while physical I/O devices are continuously getting faster.
Consequently, the cost of the exit from the VM context,
which appears as a CPU overhead (§ 6.1), makes it more dif-
�cult for virtual I/O systems to fully utilize the potential of
high-speed physical I/O devices; we observe that, in a highly-
optimized VM networking system called HyperNF [44], the
overhead of exiting from the VM context causes a 49% per-
formance reduction, compared to the direct-mapping model,
for I/O involving a physical NIC (§ 7.1).

• Cross-VM data sharing. Another example is data sharing
across guest VMs running on the same physical machine;
the shared memory allows multiple guest VMs, on the same
physical machine, to share the data at a substantially lower
overhead compared to TCP/IP networking, and it can con-
tribute to the performance of in-memory storage systems
such as Tra�cDB [6]. However, the shared memory, based
on the direct-mapping model, negates the isolation bene�t of
VMs, and it o�ers a signi�cant chance for an adversary, who
has successfully compromised one of the guest VMs, to attack
the other guest VMs that have the access to the same shared
memory region. The host-interposition model resolves this



Problem Statement

cRde

gXeVW VM

maS

RbMecW

RbMecW

acceVV
cRde

gXeVW VM

RbMecW

maS

acceVV

KRVW

Direct-mapping
Exit-Less, Isolated, and Shared Access for Virtual Machines

Kenichi Yasukata
IIJ Research Laboratory

Japan

Hajime Tazaki
IIJ Research Laboratory

Japan

Pierre-Louis Aublin
IIJ Research Laboratory

Japan

ABSTRACT
This paper explores Exit-Less, Isolated, and Shared Access (ELISA),
a novel in-memory object sharing scheme for Virtual Machines
(VMs). ELISA has the isolation advantage over the shared memory
directly exposed to guest VMswhile its overhead is smaller than that
of host-interposition relying on the costly exit from the VM context.
In a nutshell, ELISA isolates shared in-memory objects by Extended
Page Table (EPT) separation, and a guest VM accesses them by
switching the EPT context using VMFUNC, a low-overhead CPU
instruction of Intel CPUs. Our experiment shows that the overhead
of ELISA is 3.5 times smaller than that of VMCALL-oriented host-
interposition. We demonstrate the bene�ts of ELISA through two
use cases; by replacing VMCALL with ELISA, a VM networking
system and an in-memory key-value store exhibit 163% and 64%
higher performance respectively.

CCS CONCEPTS
• Software and its engineering! Virtual machines.

KEYWORDS
Virtualization, Isolation, Shared Memory

ACM Reference Format:
Kenichi Yasukata, Hajime Tazaki, and Pierre-Louis Aublin. 2023. Exit-Less,
Isolated, and Shared Access for Virtual Machines. In Proceedings of the 28th
ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 3 (ASPLOS ’23), March 25–29,
2023, Vancouver, BC, Canada. ACM, New York, NY, USA, 14 pages. https:
//doi.org/10.1145/3582016.3582042

1 INTRODUCTION
Virtual Machines (VMs) are one of the most popular computation
environments. Particularly, they have been the foundation of cloud
computing infrastructures. One of the primary reasons why VMs
are widely used is their isolation property: a guest VM can access
only the resources granted by the host. In particular, memory iso-
lation is essential to guarantee that a guest VM will not access
in-memory objects (e.g., the code to be executed, the data manipu-
lated by the code, and the memory region used for Direct Memory
Access (DMA) of a physical I/O device) dedicated to the host or
other guest VMs. Nevertheless, sharing the same in-memory ob-
ject can be bene�cial, for example, to share a physical I/O device
between di�erent guest VMs.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9918-0/23/03.
https://doi.org/10.1145/3582016.3582042

Table 1: Properties of the in-memory object sharing schemes.

Description Shared access Isolation overhead
Direct-mapping No isolation None
Host-interposition Isolated High
ELISA (this work) Isolated Low

Problem statement. There are two existing in-memory object
sharing schemes for VMs: direct-mapping which directly maps the
same memory region to di�erent guest VMs, and host-interposition
where the host intermediates access to a shared in-memory object.
Both have pros and cons as shown in Table 1. Host-interposition of-
fers isolation but incurs a high overhead due to the exit from the VM
context [1]. In contrast, direct-mapping o�ers high performance
but does not provide isolation. Despite its negative performance
impact, the host-interposition model is popularly applied in virtu-
alized environments where guest VMs are untrusted and need to
be isolated from each other and from the host. The problem, this
work addresses, is the lack of an in-memory object sharing scheme
that provides both isolation and low overhead.

Motivating examples. This problem is serious in various virtu-
alization scenarios.

• Virtual I/O. For example, virtual I/O systems typically adopt
the host-interposition model and hide the DMA regions of
physical I/O devices in the trusted host context so that un-
trusted guest VMs cannot directly manipulate the physical
I/O devices. However, in the recent trend of hardware inno-
vation, a drastic improvement in CPU speed is not expected
while physical I/O devices are continuously getting faster.
Consequently, the cost of the exit from the VM context,
which appears as a CPU overhead (§ 6.1), makes it more dif-
�cult for virtual I/O systems to fully utilize the potential of
high-speed physical I/O devices; we observe that, in a highly-
optimized VM networking system called HyperNF [44], the
overhead of exiting from the VM context causes a 49% per-
formance reduction, compared to the direct-mapping model,
for I/O involving a physical NIC (§ 7.1).

• Cross-VM data sharing. Another example is data sharing
across guest VMs running on the same physical machine;
the shared memory allows multiple guest VMs, on the same
physical machine, to share the data at a substantially lower
overhead compared to TCP/IP networking, and it can con-
tribute to the performance of in-memory storage systems
such as Tra�cDB [6]. However, the shared memory, based
on the direct-mapping model, negates the isolation bene�t of
VMs, and it o�ers a signi�cant chance for an adversary, who
has successfully compromised one of the guest VMs, to attack
the other guest VMs that have the access to the same shared
memory region. The host-interposition model resolves this



Problem Statement

cRde

gXeVW VM

maS

RbMecW

RbMecW

acceVV
cRde

gXeVW VM

RbMecW

maS

acceVV

KRVW

Direct-mapping

cRde

gXeVW VM

RbMecW
acceVV

cRde

gXeVW VM

KRVW

cRde

e[iW e[iW

Host-interposition
Exit-Less, Isolated, and Shared Access for Virtual Machines

Kenichi Yasukata
IIJ Research Laboratory

Japan

Hajime Tazaki
IIJ Research Laboratory

Japan

Pierre-Louis Aublin
IIJ Research Laboratory

Japan

ABSTRACT
This paper explores Exit-Less, Isolated, and Shared Access (ELISA),
a novel in-memory object sharing scheme for Virtual Machines
(VMs). ELISA has the isolation advantage over the shared memory
directly exposed to guest VMswhile its overhead is smaller than that
of host-interposition relying on the costly exit from the VM context.
In a nutshell, ELISA isolates shared in-memory objects by Extended
Page Table (EPT) separation, and a guest VM accesses them by
switching the EPT context using VMFUNC, a low-overhead CPU
instruction of Intel CPUs. Our experiment shows that the overhead
of ELISA is 3.5 times smaller than that of VMCALL-oriented host-
interposition. We demonstrate the bene�ts of ELISA through two
use cases; by replacing VMCALL with ELISA, a VM networking
system and an in-memory key-value store exhibit 163% and 64%
higher performance respectively.

CCS CONCEPTS
• Software and its engineering! Virtual machines.

KEYWORDS
Virtualization, Isolation, Shared Memory

ACM Reference Format:
Kenichi Yasukata, Hajime Tazaki, and Pierre-Louis Aublin. 2023. Exit-Less,
Isolated, and Shared Access for Virtual Machines. In Proceedings of the 28th
ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 3 (ASPLOS ’23), March 25–29,
2023, Vancouver, BC, Canada. ACM, New York, NY, USA, 14 pages. https:
//doi.org/10.1145/3582016.3582042

1 INTRODUCTION
Virtual Machines (VMs) are one of the most popular computation
environments. Particularly, they have been the foundation of cloud
computing infrastructures. One of the primary reasons why VMs
are widely used is their isolation property: a guest VM can access
only the resources granted by the host. In particular, memory iso-
lation is essential to guarantee that a guest VM will not access
in-memory objects (e.g., the code to be executed, the data manipu-
lated by the code, and the memory region used for Direct Memory
Access (DMA) of a physical I/O device) dedicated to the host or
other guest VMs. Nevertheless, sharing the same in-memory ob-
ject can be bene�cial, for example, to share a physical I/O device
between di�erent guest VMs.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9918-0/23/03.
https://doi.org/10.1145/3582016.3582042

Table 1: Properties of the in-memory object sharing schemes.

Description Shared access Isolation overhead
Direct-mapping No isolation None
Host-interposition Isolated High
ELISA (this work) Isolated Low

Problem statement. There are two existing in-memory object
sharing schemes for VMs: direct-mapping which directly maps the
same memory region to di�erent guest VMs, and host-interposition
where the host intermediates access to a shared in-memory object.
Both have pros and cons as shown in Table 1. Host-interposition of-
fers isolation but incurs a high overhead due to the exit from the VM
context [1]. In contrast, direct-mapping o�ers high performance
but does not provide isolation. Despite its negative performance
impact, the host-interposition model is popularly applied in virtu-
alized environments where guest VMs are untrusted and need to
be isolated from each other and from the host. The problem, this
work addresses, is the lack of an in-memory object sharing scheme
that provides both isolation and low overhead.

Motivating examples. This problem is serious in various virtu-
alization scenarios.

• Virtual I/O. For example, virtual I/O systems typically adopt
the host-interposition model and hide the DMA regions of
physical I/O devices in the trusted host context so that un-
trusted guest VMs cannot directly manipulate the physical
I/O devices. However, in the recent trend of hardware inno-
vation, a drastic improvement in CPU speed is not expected
while physical I/O devices are continuously getting faster.
Consequently, the cost of the exit from the VM context,
which appears as a CPU overhead (§ 6.1), makes it more dif-
�cult for virtual I/O systems to fully utilize the potential of
high-speed physical I/O devices; we observe that, in a highly-
optimized VM networking system called HyperNF [44], the
overhead of exiting from the VM context causes a 49% per-
formance reduction, compared to the direct-mapping model,
for I/O involving a physical NIC (§ 7.1).

• Cross-VM data sharing. Another example is data sharing
across guest VMs running on the same physical machine;
the shared memory allows multiple guest VMs, on the same
physical machine, to share the data at a substantially lower
overhead compared to TCP/IP networking, and it can con-
tribute to the performance of in-memory storage systems
such as Tra�cDB [6]. However, the shared memory, based
on the direct-mapping model, negates the isolation bene�t of
VMs, and it o�ers a signi�cant chance for an adversary, who
has successfully compromised one of the guest VMs, to attack
the other guest VMs that have the access to the same shared
memory region. The host-interposition model resolves this



Problem Statement

cRde

gXeVW VM

maS

RbMecW

RbMecW

acceVV
cRde

gXeVW VM

RbMecW

maS

acceVV

KRVW

Direct-mapping

cRde

gXeVW VM

RbMecW
acceVV

cRde

gXeVW VM

KRVW

cRde

e[iW e[iW

Host-interposition
Exit-Less, Isolated, and Shared Access for Virtual Machines

Kenichi Yasukata
IIJ Research Laboratory

Japan

Hajime Tazaki
IIJ Research Laboratory

Japan

Pierre-Louis Aublin
IIJ Research Laboratory

Japan

ABSTRACT
This paper explores Exit-Less, Isolated, and Shared Access (ELISA),
a novel in-memory object sharing scheme for Virtual Machines
(VMs). ELISA has the isolation advantage over the shared memory
directly exposed to guest VMswhile its overhead is smaller than that
of host-interposition relying on the costly exit from the VM context.
In a nutshell, ELISA isolates shared in-memory objects by Extended
Page Table (EPT) separation, and a guest VM accesses them by
switching the EPT context using VMFUNC, a low-overhead CPU
instruction of Intel CPUs. Our experiment shows that the overhead
of ELISA is 3.5 times smaller than that of VMCALL-oriented host-
interposition. We demonstrate the bene�ts of ELISA through two
use cases; by replacing VMCALL with ELISA, a VM networking
system and an in-memory key-value store exhibit 163% and 64%
higher performance respectively.

CCS CONCEPTS
• Software and its engineering! Virtual machines.

KEYWORDS
Virtualization, Isolation, Shared Memory

ACM Reference Format:
Kenichi Yasukata, Hajime Tazaki, and Pierre-Louis Aublin. 2023. Exit-Less,
Isolated, and Shared Access for Virtual Machines. In Proceedings of the 28th
ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 3 (ASPLOS ’23), March 25–29,
2023, Vancouver, BC, Canada. ACM, New York, NY, USA, 14 pages. https:
//doi.org/10.1145/3582016.3582042

1 INTRODUCTION
Virtual Machines (VMs) are one of the most popular computation
environments. Particularly, they have been the foundation of cloud
computing infrastructures. One of the primary reasons why VMs
are widely used is their isolation property: a guest VM can access
only the resources granted by the host. In particular, memory iso-
lation is essential to guarantee that a guest VM will not access
in-memory objects (e.g., the code to be executed, the data manipu-
lated by the code, and the memory region used for Direct Memory
Access (DMA) of a physical I/O device) dedicated to the host or
other guest VMs. Nevertheless, sharing the same in-memory ob-
ject can be bene�cial, for example, to share a physical I/O device
between di�erent guest VMs.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9918-0/23/03.
https://doi.org/10.1145/3582016.3582042

Table 1: Properties of the in-memory object sharing schemes.

Description Shared access Isolation overhead
Direct-mapping No isolation None
Host-interposition Isolated High
ELISA (this work) Isolated Low

Problem statement. There are two existing in-memory object
sharing schemes for VMs: direct-mapping which directly maps the
same memory region to di�erent guest VMs, and host-interposition
where the host intermediates access to a shared in-memory object.
Both have pros and cons as shown in Table 1. Host-interposition of-
fers isolation but incurs a high overhead due to the exit from the VM
context [1]. In contrast, direct-mapping o�ers high performance
but does not provide isolation. Despite its negative performance
impact, the host-interposition model is popularly applied in virtu-
alized environments where guest VMs are untrusted and need to
be isolated from each other and from the host. The problem, this
work addresses, is the lack of an in-memory object sharing scheme
that provides both isolation and low overhead.

Motivating examples. This problem is serious in various virtu-
alization scenarios.

• Virtual I/O. For example, virtual I/O systems typically adopt
the host-interposition model and hide the DMA regions of
physical I/O devices in the trusted host context so that un-
trusted guest VMs cannot directly manipulate the physical
I/O devices. However, in the recent trend of hardware inno-
vation, a drastic improvement in CPU speed is not expected
while physical I/O devices are continuously getting faster.
Consequently, the cost of the exit from the VM context,
which appears as a CPU overhead (§ 6.1), makes it more dif-
�cult for virtual I/O systems to fully utilize the potential of
high-speed physical I/O devices; we observe that, in a highly-
optimized VM networking system called HyperNF [44], the
overhead of exiting from the VM context causes a 49% per-
formance reduction, compared to the direct-mapping model,
for I/O involving a physical NIC (§ 7.1).

• Cross-VM data sharing. Another example is data sharing
across guest VMs running on the same physical machine;
the shared memory allows multiple guest VMs, on the same
physical machine, to share the data at a substantially lower
overhead compared to TCP/IP networking, and it can con-
tribute to the performance of in-memory storage systems
such as Tra�cDB [6]. However, the shared memory, based
on the direct-mapping model, negates the isolation bene�t of
VMs, and it o�ers a signi�cant chance for an adversary, who
has successfully compromised one of the guest VMs, to attack
the other guest VMs that have the access to the same shared
memory region. The host-interposition model resolves this



Problem Statement

cRde

gXeVW VM

maS

RbMecW

RbMecW

acceVV
cRde

gXeVW VM

RbMecW

maS

acceVV

KRVW

Direct-mapping

cRde

gXeVW VM

RbMecW
acceVV

cRde

gXeVW VM

KRVW

cRde

e[iW e[iW

Host-interposition
Exit-Less, Isolated, and Shared Access for Virtual Machines

Kenichi Yasukata
IIJ Research Laboratory

Japan

Hajime Tazaki
IIJ Research Laboratory

Japan

Pierre-Louis Aublin
IIJ Research Laboratory

Japan

ABSTRACT
This paper explores Exit-Less, Isolated, and Shared Access (ELISA),
a novel in-memory object sharing scheme for Virtual Machines
(VMs). ELISA has the isolation advantage over the shared memory
directly exposed to guest VMswhile its overhead is smaller than that
of host-interposition relying on the costly exit from the VM context.
In a nutshell, ELISA isolates shared in-memory objects by Extended
Page Table (EPT) separation, and a guest VM accesses them by
switching the EPT context using VMFUNC, a low-overhead CPU
instruction of Intel CPUs. Our experiment shows that the overhead
of ELISA is 3.5 times smaller than that of VMCALL-oriented host-
interposition. We demonstrate the bene�ts of ELISA through two
use cases; by replacing VMCALL with ELISA, a VM networking
system and an in-memory key-value store exhibit 163% and 64%
higher performance respectively.

CCS CONCEPTS
• Software and its engineering! Virtual machines.

KEYWORDS
Virtualization, Isolation, Shared Memory

ACM Reference Format:
Kenichi Yasukata, Hajime Tazaki, and Pierre-Louis Aublin. 2023. Exit-Less,
Isolated, and Shared Access for Virtual Machines. In Proceedings of the 28th
ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 3 (ASPLOS ’23), March 25–29,
2023, Vancouver, BC, Canada. ACM, New York, NY, USA, 14 pages. https:
//doi.org/10.1145/3582016.3582042

1 INTRODUCTION
Virtual Machines (VMs) are one of the most popular computation
environments. Particularly, they have been the foundation of cloud
computing infrastructures. One of the primary reasons why VMs
are widely used is their isolation property: a guest VM can access
only the resources granted by the host. In particular, memory iso-
lation is essential to guarantee that a guest VM will not access
in-memory objects (e.g., the code to be executed, the data manipu-
lated by the code, and the memory region used for Direct Memory
Access (DMA) of a physical I/O device) dedicated to the host or
other guest VMs. Nevertheless, sharing the same in-memory ob-
ject can be bene�cial, for example, to share a physical I/O device
between di�erent guest VMs.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9918-0/23/03.
https://doi.org/10.1145/3582016.3582042

Table 1: Properties of the in-memory object sharing schemes.

Description Shared access Isolation overhead
Direct-mapping No isolation None
Host-interposition Isolated High
ELISA (this work) Isolated Low

Problem statement. There are two existing in-memory object
sharing schemes for VMs: direct-mapping which directly maps the
same memory region to di�erent guest VMs, and host-interposition
where the host intermediates access to a shared in-memory object.
Both have pros and cons as shown in Table 1. Host-interposition of-
fers isolation but incurs a high overhead due to the exit from the VM
context [1]. In contrast, direct-mapping o�ers high performance
but does not provide isolation. Despite its negative performance
impact, the host-interposition model is popularly applied in virtu-
alized environments where guest VMs are untrusted and need to
be isolated from each other and from the host. The problem, this
work addresses, is the lack of an in-memory object sharing scheme
that provides both isolation and low overhead.

Motivating examples. This problem is serious in various virtu-
alization scenarios.

• Virtual I/O. For example, virtual I/O systems typically adopt
the host-interposition model and hide the DMA regions of
physical I/O devices in the trusted host context so that un-
trusted guest VMs cannot directly manipulate the physical
I/O devices. However, in the recent trend of hardware inno-
vation, a drastic improvement in CPU speed is not expected
while physical I/O devices are continuously getting faster.
Consequently, the cost of the exit from the VM context,
which appears as a CPU overhead (§ 6.1), makes it more dif-
�cult for virtual I/O systems to fully utilize the potential of
high-speed physical I/O devices; we observe that, in a highly-
optimized VM networking system called HyperNF [44], the
overhead of exiting from the VM context causes a 49% per-
formance reduction, compared to the direct-mapping model,
for I/O involving a physical NIC (§ 7.1).

• Cross-VM data sharing. Another example is data sharing
across guest VMs running on the same physical machine;
the shared memory allows multiple guest VMs, on the same
physical machine, to share the data at a substantially lower
overhead compared to TCP/IP networking, and it can con-
tribute to the performance of in-memory storage systems
such as Tra�cDB [6]. However, the shared memory, based
on the direct-mapping model, negates the isolation bene�t of
VMs, and it o�ers a signi�cant chance for an adversary, who
has successfully compromised one of the guest VMs, to attack
the other guest VMs that have the access to the same shared
memory region. The host-interposition model resolves this



Problem Statement

cRde

gXeVW VM

maS

RbMecW

RbMecW

acceVV
cRde

gXeVW VM

RbMecW

maS

acceVV

KRVW

Direct-mapping

cRde

gXeVW VM

RbMecW
acceVV

cRde

gXeVW VM

KRVW

cRde

e[iW e[iW

Host-interposition
Exit-Less, Isolated, and Shared Access for Virtual Machines

Kenichi Yasukata
IIJ Research Laboratory

Japan

Hajime Tazaki
IIJ Research Laboratory

Japan

Pierre-Louis Aublin
IIJ Research Laboratory

Japan

ABSTRACT
This paper explores Exit-Less, Isolated, and Shared Access (ELISA),
a novel in-memory object sharing scheme for Virtual Machines
(VMs). ELISA has the isolation advantage over the shared memory
directly exposed to guest VMswhile its overhead is smaller than that
of host-interposition relying on the costly exit from the VM context.
In a nutshell, ELISA isolates shared in-memory objects by Extended
Page Table (EPT) separation, and a guest VM accesses them by
switching the EPT context using VMFUNC, a low-overhead CPU
instruction of Intel CPUs. Our experiment shows that the overhead
of ELISA is 3.5 times smaller than that of VMCALL-oriented host-
interposition. We demonstrate the bene�ts of ELISA through two
use cases; by replacing VMCALL with ELISA, a VM networking
system and an in-memory key-value store exhibit 163% and 64%
higher performance respectively.

CCS CONCEPTS
• Software and its engineering! Virtual machines.

KEYWORDS
Virtualization, Isolation, Shared Memory

ACM Reference Format:
Kenichi Yasukata, Hajime Tazaki, and Pierre-Louis Aublin. 2023. Exit-Less,
Isolated, and Shared Access for Virtual Machines. In Proceedings of the 28th
ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 3 (ASPLOS ’23), March 25–29,
2023, Vancouver, BC, Canada. ACM, New York, NY, USA, 14 pages. https:
//doi.org/10.1145/3582016.3582042

1 INTRODUCTION
Virtual Machines (VMs) are one of the most popular computation
environments. Particularly, they have been the foundation of cloud
computing infrastructures. One of the primary reasons why VMs
are widely used is their isolation property: a guest VM can access
only the resources granted by the host. In particular, memory iso-
lation is essential to guarantee that a guest VM will not access
in-memory objects (e.g., the code to be executed, the data manipu-
lated by the code, and the memory region used for Direct Memory
Access (DMA) of a physical I/O device) dedicated to the host or
other guest VMs. Nevertheless, sharing the same in-memory ob-
ject can be bene�cial, for example, to share a physical I/O device
between di�erent guest VMs.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9918-0/23/03.
https://doi.org/10.1145/3582016.3582042

Table 1: Properties of the in-memory object sharing schemes.

Description Shared access Isolation overhead
Direct-mapping No isolation None
Host-interposition Isolated High
ELISA (this work) Isolated Low

Problem statement. There are two existing in-memory object
sharing schemes for VMs: direct-mapping which directly maps the
same memory region to di�erent guest VMs, and host-interposition
where the host intermediates access to a shared in-memory object.
Both have pros and cons as shown in Table 1. Host-interposition of-
fers isolation but incurs a high overhead due to the exit from the VM
context [1]. In contrast, direct-mapping o�ers high performance
but does not provide isolation. Despite its negative performance
impact, the host-interposition model is popularly applied in virtu-
alized environments where guest VMs are untrusted and need to
be isolated from each other and from the host. The problem, this
work addresses, is the lack of an in-memory object sharing scheme
that provides both isolation and low overhead.

Motivating examples. This problem is serious in various virtu-
alization scenarios.

• Virtual I/O. For example, virtual I/O systems typically adopt
the host-interposition model and hide the DMA regions of
physical I/O devices in the trusted host context so that un-
trusted guest VMs cannot directly manipulate the physical
I/O devices. However, in the recent trend of hardware inno-
vation, a drastic improvement in CPU speed is not expected
while physical I/O devices are continuously getting faster.
Consequently, the cost of the exit from the VM context,
which appears as a CPU overhead (§ 6.1), makes it more dif-
�cult for virtual I/O systems to fully utilize the potential of
high-speed physical I/O devices; we observe that, in a highly-
optimized VM networking system called HyperNF [44], the
overhead of exiting from the VM context causes a 49% per-
formance reduction, compared to the direct-mapping model,
for I/O involving a physical NIC (§ 7.1).

• Cross-VM data sharing. Another example is data sharing
across guest VMs running on the same physical machine;
the shared memory allows multiple guest VMs, on the same
physical machine, to share the data at a substantially lower
overhead compared to TCP/IP networking, and it can con-
tribute to the performance of in-memory storage systems
such as Tra�cDB [6]. However, the shared memory, based
on the direct-mapping model, negates the isolation bene�t of
VMs, and it o�ers a signi�cant chance for an adversary, who
has successfully compromised one of the guest VMs, to attack
the other guest VMs that have the access to the same shared
memory region. The host-interposition model resolves this



Problem Statement

cRde

gXeVW VM

maS

RbMecW

RbMecW

acceVV
cRde

gXeVW VM

RbMecW

maS

acceVV

KRVW

Direct-mapping

cRde

gXeVW VM

RbMecW
acceVV

cRde

gXeVW VM

KRVW

cRde

e[iW e[iW

Host-interposition
Exit-Less, Isolated, and Shared Access for Virtual Machines

Kenichi Yasukata
IIJ Research Laboratory

Japan

Hajime Tazaki
IIJ Research Laboratory

Japan

Pierre-Louis Aublin
IIJ Research Laboratory

Japan

ABSTRACT
This paper explores Exit-Less, Isolated, and Shared Access (ELISA),
a novel in-memory object sharing scheme for Virtual Machines
(VMs). ELISA has the isolation advantage over the shared memory
directly exposed to guest VMswhile its overhead is smaller than that
of host-interposition relying on the costly exit from the VM context.
In a nutshell, ELISA isolates shared in-memory objects by Extended
Page Table (EPT) separation, and a guest VM accesses them by
switching the EPT context using VMFUNC, a low-overhead CPU
instruction of Intel CPUs. Our experiment shows that the overhead
of ELISA is 3.5 times smaller than that of VMCALL-oriented host-
interposition. We demonstrate the bene�ts of ELISA through two
use cases; by replacing VMCALL with ELISA, a VM networking
system and an in-memory key-value store exhibit 163% and 64%
higher performance respectively.

CCS CONCEPTS
• Software and its engineering! Virtual machines.

KEYWORDS
Virtualization, Isolation, Shared Memory

ACM Reference Format:
Kenichi Yasukata, Hajime Tazaki, and Pierre-Louis Aublin. 2023. Exit-Less,
Isolated, and Shared Access for Virtual Machines. In Proceedings of the 28th
ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 3 (ASPLOS ’23), March 25–29,
2023, Vancouver, BC, Canada. ACM, New York, NY, USA, 14 pages. https:
//doi.org/10.1145/3582016.3582042

1 INTRODUCTION
Virtual Machines (VMs) are one of the most popular computation
environments. Particularly, they have been the foundation of cloud
computing infrastructures. One of the primary reasons why VMs
are widely used is their isolation property: a guest VM can access
only the resources granted by the host. In particular, memory iso-
lation is essential to guarantee that a guest VM will not access
in-memory objects (e.g., the code to be executed, the data manipu-
lated by the code, and the memory region used for Direct Memory
Access (DMA) of a physical I/O device) dedicated to the host or
other guest VMs. Nevertheless, sharing the same in-memory ob-
ject can be bene�cial, for example, to share a physical I/O device
between di�erent guest VMs.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9918-0/23/03.
https://doi.org/10.1145/3582016.3582042

Table 1: Properties of the in-memory object sharing schemes.

Description Shared access Isolation overhead
Direct-mapping No isolation None
Host-interposition Isolated High
ELISA (this work) Isolated Low

Problem statement. There are two existing in-memory object
sharing schemes for VMs: direct-mapping which directly maps the
same memory region to di�erent guest VMs, and host-interposition
where the host intermediates access to a shared in-memory object.
Both have pros and cons as shown in Table 1. Host-interposition of-
fers isolation but incurs a high overhead due to the exit from the VM
context [1]. In contrast, direct-mapping o�ers high performance
but does not provide isolation. Despite its negative performance
impact, the host-interposition model is popularly applied in virtu-
alized environments where guest VMs are untrusted and need to
be isolated from each other and from the host. The problem, this
work addresses, is the lack of an in-memory object sharing scheme
that provides both isolation and low overhead.

Motivating examples. This problem is serious in various virtu-
alization scenarios.

• Virtual I/O. For example, virtual I/O systems typically adopt
the host-interposition model and hide the DMA regions of
physical I/O devices in the trusted host context so that un-
trusted guest VMs cannot directly manipulate the physical
I/O devices. However, in the recent trend of hardware inno-
vation, a drastic improvement in CPU speed is not expected
while physical I/O devices are continuously getting faster.
Consequently, the cost of the exit from the VM context,
which appears as a CPU overhead (§ 6.1), makes it more dif-
�cult for virtual I/O systems to fully utilize the potential of
high-speed physical I/O devices; we observe that, in a highly-
optimized VM networking system called HyperNF [44], the
overhead of exiting from the VM context causes a 49% per-
formance reduction, compared to the direct-mapping model,
for I/O involving a physical NIC (§ 7.1).

• Cross-VM data sharing. Another example is data sharing
across guest VMs running on the same physical machine;
the shared memory allows multiple guest VMs, on the same
physical machine, to share the data at a substantially lower
overhead compared to TCP/IP networking, and it can con-
tribute to the performance of in-memory storage systems
such as Tra�cDB [6]. However, the shared memory, based
on the direct-mapping model, negates the isolation bene�t of
VMs, and it o�ers a signi�cant chance for an adversary, who
has successfully compromised one of the guest VMs, to attack
the other guest VMs that have the access to the same shared
memory region. The host-interposition model resolves this



Problem Statement

cRde

gXeVW VM

maS

RbMecW

RbMecW

acceVV
cRde

gXeVW VM

RbMecW

maS

acceVV

KRVW

Direct-mapping

cRde

gXeVW VM

RbMecW
acceVV

cRde

gXeVW VM

KRVW

cRde

e[iW e[iW

Host-interposition
Exit-Less, Isolated, and Shared Access for Virtual Machines

Kenichi Yasukata
IIJ Research Laboratory

Japan

Hajime Tazaki
IIJ Research Laboratory

Japan

Pierre-Louis Aublin
IIJ Research Laboratory

Japan

ABSTRACT
This paper explores Exit-Less, Isolated, and Shared Access (ELISA),
a novel in-memory object sharing scheme for Virtual Machines
(VMs). ELISA has the isolation advantage over the shared memory
directly exposed to guest VMswhile its overhead is smaller than that
of host-interposition relying on the costly exit from the VM context.
In a nutshell, ELISA isolates shared in-memory objects by Extended
Page Table (EPT) separation, and a guest VM accesses them by
switching the EPT context using VMFUNC, a low-overhead CPU
instruction of Intel CPUs. Our experiment shows that the overhead
of ELISA is 3.5 times smaller than that of VMCALL-oriented host-
interposition. We demonstrate the bene�ts of ELISA through two
use cases; by replacing VMCALL with ELISA, a VM networking
system and an in-memory key-value store exhibit 163% and 64%
higher performance respectively.

CCS CONCEPTS
• Software and its engineering! Virtual machines.

KEYWORDS
Virtualization, Isolation, Shared Memory

ACM Reference Format:
Kenichi Yasukata, Hajime Tazaki, and Pierre-Louis Aublin. 2023. Exit-Less,
Isolated, and Shared Access for Virtual Machines. In Proceedings of the 28th
ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 3 (ASPLOS ’23), March 25–29,
2023, Vancouver, BC, Canada. ACM, New York, NY, USA, 14 pages. https:
//doi.org/10.1145/3582016.3582042

1 INTRODUCTION
Virtual Machines (VMs) are one of the most popular computation
environments. Particularly, they have been the foundation of cloud
computing infrastructures. One of the primary reasons why VMs
are widely used is their isolation property: a guest VM can access
only the resources granted by the host. In particular, memory iso-
lation is essential to guarantee that a guest VM will not access
in-memory objects (e.g., the code to be executed, the data manipu-
lated by the code, and the memory region used for Direct Memory
Access (DMA) of a physical I/O device) dedicated to the host or
other guest VMs. Nevertheless, sharing the same in-memory ob-
ject can be bene�cial, for example, to share a physical I/O device
between di�erent guest VMs.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9918-0/23/03.
https://doi.org/10.1145/3582016.3582042

Table 1: Properties of the in-memory object sharing schemes.

Description Shared access Isolation overhead
Direct-mapping No isolation None
Host-interposition Isolated High
ELISA (this work) Isolated Low

Problem statement. There are two existing in-memory object
sharing schemes for VMs: direct-mapping which directly maps the
same memory region to di�erent guest VMs, and host-interposition
where the host intermediates access to a shared in-memory object.
Both have pros and cons as shown in Table 1. Host-interposition of-
fers isolation but incurs a high overhead due to the exit from the VM
context [1]. In contrast, direct-mapping o�ers high performance
but does not provide isolation. Despite its negative performance
impact, the host-interposition model is popularly applied in virtu-
alized environments where guest VMs are untrusted and need to
be isolated from each other and from the host. The problem, this
work addresses, is the lack of an in-memory object sharing scheme
that provides both isolation and low overhead.

Motivating examples. This problem is serious in various virtu-
alization scenarios.

• Virtual I/O. For example, virtual I/O systems typically adopt
the host-interposition model and hide the DMA regions of
physical I/O devices in the trusted host context so that un-
trusted guest VMs cannot directly manipulate the physical
I/O devices. However, in the recent trend of hardware inno-
vation, a drastic improvement in CPU speed is not expected
while physical I/O devices are continuously getting faster.
Consequently, the cost of the exit from the VM context,
which appears as a CPU overhead (§ 6.1), makes it more dif-
�cult for virtual I/O systems to fully utilize the potential of
high-speed physical I/O devices; we observe that, in a highly-
optimized VM networking system called HyperNF [44], the
overhead of exiting from the VM context causes a 49% per-
formance reduction, compared to the direct-mapping model,
for I/O involving a physical NIC (§ 7.1).

• Cross-VM data sharing. Another example is data sharing
across guest VMs running on the same physical machine;
the shared memory allows multiple guest VMs, on the same
physical machine, to share the data at a substantially lower
overhead compared to TCP/IP networking, and it can con-
tribute to the performance of in-memory storage systems
such as Tra�cDB [6]. However, the shared memory, based
on the direct-mapping model, negates the isolation bene�t of
VMs, and it o�ers a signi�cant chance for an adversary, who
has successfully compromised one of the guest VMs, to attack
the other guest VMs that have the access to the same shared
memory region. The host-interposition model resolves this



Problem Statement

cRde

gXeVW VM

maS

RbMecW

RbMecW

acceVV
cRde

gXeVW VM

RbMecW

maS

acceVV

KRVW

Direct-mapping

cRde

gXeVW VM

RbMecW
acceVV

cRde

gXeVW VM

KRVW

cRde

e[iW e[iW

Exit-Less, Isolated, and Shared Access for Virtual Machines
Kenichi Yasukata

IIJ Research Laboratory
Japan

Hajime Tazaki
IIJ Research Laboratory

Japan

Pierre-Louis Aublin
IIJ Research Laboratory

Japan

ABSTRACT
This paper explores Exit-Less, Isolated, and Shared Access (ELISA),
a novel in-memory object sharing scheme for Virtual Machines
(VMs). ELISA has the isolation advantage over the shared memory
directly exposed to guest VMswhile its overhead is smaller than that
of host-interposition relying on the costly exit from the VM context.
In a nutshell, ELISA isolates shared in-memory objects by Extended
Page Table (EPT) separation, and a guest VM accesses them by
switching the EPT context using VMFUNC, a low-overhead CPU
instruction of Intel CPUs. Our experiment shows that the overhead
of ELISA is 3.5 times smaller than that of VMCALL-oriented host-
interposition. We demonstrate the bene�ts of ELISA through two
use cases; by replacing VMCALL with ELISA, a VM networking
system and an in-memory key-value store exhibit 163% and 64%
higher performance respectively.

CCS CONCEPTS
• Software and its engineering! Virtual machines.

KEYWORDS
Virtualization, Isolation, Shared Memory

ACM Reference Format:
Kenichi Yasukata, Hajime Tazaki, and Pierre-Louis Aublin. 2023. Exit-Less,
Isolated, and Shared Access for Virtual Machines. In Proceedings of the 28th
ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 3 (ASPLOS ’23), March 25–29,
2023, Vancouver, BC, Canada. ACM, New York, NY, USA, 14 pages. https:
//doi.org/10.1145/3582016.3582042

1 INTRODUCTION
Virtual Machines (VMs) are one of the most popular computation
environments. Particularly, they have been the foundation of cloud
computing infrastructures. One of the primary reasons why VMs
are widely used is their isolation property: a guest VM can access
only the resources granted by the host. In particular, memory iso-
lation is essential to guarantee that a guest VM will not access
in-memory objects (e.g., the code to be executed, the data manipu-
lated by the code, and the memory region used for Direct Memory
Access (DMA) of a physical I/O device) dedicated to the host or
other guest VMs. Nevertheless, sharing the same in-memory ob-
ject can be bene�cial, for example, to share a physical I/O device
between di�erent guest VMs.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9918-0/23/03.
https://doi.org/10.1145/3582016.3582042

Table 1: Properties of the in-memory object sharing schemes.

Description Shared access Isolation overhead
Direct-mapping No isolation None
Host-interposition Isolated High
ELISA (this work) Isolated Low

Problem statement. There are two existing in-memory object
sharing schemes for VMs: direct-mapping which directly maps the
same memory region to di�erent guest VMs, and host-interposition
where the host intermediates access to a shared in-memory object.
Both have pros and cons as shown in Table 1. Host-interposition of-
fers isolation but incurs a high overhead due to the exit from the VM
context [1]. In contrast, direct-mapping o�ers high performance
but does not provide isolation. Despite its negative performance
impact, the host-interposition model is popularly applied in virtu-
alized environments where guest VMs are untrusted and need to
be isolated from each other and from the host. The problem, this
work addresses, is the lack of an in-memory object sharing scheme
that provides both isolation and low overhead.

Motivating examples. This problem is serious in various virtu-
alization scenarios.

• Virtual I/O. For example, virtual I/O systems typically adopt
the host-interposition model and hide the DMA regions of
physical I/O devices in the trusted host context so that un-
trusted guest VMs cannot directly manipulate the physical
I/O devices. However, in the recent trend of hardware inno-
vation, a drastic improvement in CPU speed is not expected
while physical I/O devices are continuously getting faster.
Consequently, the cost of the exit from the VM context,
which appears as a CPU overhead (§ 6.1), makes it more dif-
�cult for virtual I/O systems to fully utilize the potential of
high-speed physical I/O devices; we observe that, in a highly-
optimized VM networking system called HyperNF [44], the
overhead of exiting from the VM context causes a 49% per-
formance reduction, compared to the direct-mapping model,
for I/O involving a physical NIC (§ 7.1).

• Cross-VM data sharing. Another example is data sharing
across guest VMs running on the same physical machine;
the shared memory allows multiple guest VMs, on the same
physical machine, to share the data at a substantially lower
overhead compared to TCP/IP networking, and it can con-
tribute to the performance of in-memory storage systems
such as Tra�cDB [6]. However, the shared memory, based
on the direct-mapping model, negates the isolation bene�t of
VMs, and it o�ers a signi�cant chance for an adversary, who
has successfully compromised one of the guest VMs, to attack
the other guest VMs that have the access to the same shared
memory region. The host-interposition model resolves this

Host-interposition

😁😭
😁 😭
😁 😀



VM
FU

N
C

cRde

cRde

defaXlW EPT cRQWe[W

gaWe EPT cRQWe[W

gXeVW VM

VXb EPT cRQWe[W

cRde

ORaG
PaS

RbjecW

RbjecW

accHVV

VM
FU

N
C

cRde

cRde

gXeVW VM

RbjecW

PaS

ORaG

accHVV

maQageU VM

This Work

Exit-Less, Isolated, and Shared Access for Virtual Machines
Kenichi Yasukata

IIJ Research Laboratory
Japan

Hajime Tazaki
IIJ Research Laboratory

Japan

Pierre-Louis Aublin
IIJ Research Laboratory

Japan

ABSTRACT
This paper explores Exit-Less, Isolated, and Shared Access (ELISA),
a novel in-memory object sharing scheme for Virtual Machines
(VMs). ELISA has the isolation advantage over the shared memory
directly exposed to guest VMswhile its overhead is smaller than that
of host-interposition relying on the costly exit from the VM context.
In a nutshell, ELISA isolates shared in-memory objects by Extended
Page Table (EPT) separation, and a guest VM accesses them by
switching the EPT context using VMFUNC, a low-overhead CPU
instruction of Intel CPUs. Our experiment shows that the overhead
of ELISA is 3.5 times smaller than that of VMCALL-oriented host-
interposition. We demonstrate the bene�ts of ELISA through two
use cases; by replacing VMCALL with ELISA, a VM networking
system and an in-memory key-value store exhibit 163% and 64%
higher performance respectively.

CCS CONCEPTS
• Software and its engineering! Virtual machines.

KEYWORDS
Virtualization, Isolation, Shared Memory

ACM Reference Format:
Kenichi Yasukata, Hajime Tazaki, and Pierre-Louis Aublin. 2023. Exit-Less,
Isolated, and Shared Access for Virtual Machines. In Proceedings of the 28th
ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 3 (ASPLOS ’23), March 25–29,
2023, Vancouver, BC, Canada. ACM, New York, NY, USA, 14 pages. https:
//doi.org/10.1145/3582016.3582042

1 INTRODUCTION
Virtual Machines (VMs) are one of the most popular computation
environments. Particularly, they have been the foundation of cloud
computing infrastructures. One of the primary reasons why VMs
are widely used is their isolation property: a guest VM can access
only the resources granted by the host. In particular, memory iso-
lation is essential to guarantee that a guest VM will not access
in-memory objects (e.g., the code to be executed, the data manipu-
lated by the code, and the memory region used for Direct Memory
Access (DMA) of a physical I/O device) dedicated to the host or
other guest VMs. Nevertheless, sharing the same in-memory ob-
ject can be bene�cial, for example, to share a physical I/O device
between di�erent guest VMs.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9918-0/23/03.
https://doi.org/10.1145/3582016.3582042

Table 1: Properties of the in-memory object sharing schemes.

Description Shared access Isolation overhead
Direct-mapping No isolation None
Host-interposition Isolated High
ELISA (this work) Isolated Low

Problem statement. There are two existing in-memory object
sharing schemes for VMs: direct-mapping which directly maps the
same memory region to di�erent guest VMs, and host-interposition
where the host intermediates access to a shared in-memory object.
Both have pros and cons as shown in Table 1. Host-interposition of-
fers isolation but incurs a high overhead due to the exit from the VM
context [1]. In contrast, direct-mapping o�ers high performance
but does not provide isolation. Despite its negative performance
impact, the host-interposition model is popularly applied in virtu-
alized environments where guest VMs are untrusted and need to
be isolated from each other and from the host. The problem, this
work addresses, is the lack of an in-memory object sharing scheme
that provides both isolation and low overhead.

Motivating examples. This problem is serious in various virtu-
alization scenarios.

• Virtual I/O. For example, virtual I/O systems typically adopt
the host-interposition model and hide the DMA regions of
physical I/O devices in the trusted host context so that un-
trusted guest VMs cannot directly manipulate the physical
I/O devices. However, in the recent trend of hardware inno-
vation, a drastic improvement in CPU speed is not expected
while physical I/O devices are continuously getting faster.
Consequently, the cost of the exit from the VM context,
which appears as a CPU overhead (§ 6.1), makes it more dif-
�cult for virtual I/O systems to fully utilize the potential of
high-speed physical I/O devices; we observe that, in a highly-
optimized VM networking system called HyperNF [44], the
overhead of exiting from the VM context causes a 49% per-
formance reduction, compared to the direct-mapping model,
for I/O involving a physical NIC (§ 7.1).

• Cross-VM data sharing. Another example is data sharing
across guest VMs running on the same physical machine;
the shared memory allows multiple guest VMs, on the same
physical machine, to share the data at a substantially lower
overhead compared to TCP/IP networking, and it can con-
tribute to the performance of in-memory storage systems
such as Tra�cDB [6]. However, the shared memory, based
on the direct-mapping model, negates the isolation bene�t of
VMs, and it o�ers a signi�cant chance for an adversary, who
has successfully compromised one of the guest VMs, to attack
the other guest VMs that have the access to the same shared
memory region. The host-interposition model resolves this

😁😭
😁 😭

ELISA
(Exit-Less, Isolated, and Shared Access)

😁 😀



VM
FU

N
C

cRde

cRde

defaXlW EPT cRQWe[W

gaWe EPT cRQWe[W

gXeVW VM

VXb EPT cRQWe[W

cRde

ORaG
PaS

RbjecW

RbjecW

accHVV

VM
FU

N
C

cRde

cRde

gXeVW VM

RbjecW

PaS

ORaG

accHVV

maQageU VM

This Work

• Isolation
• Extended Page Table (EPT) separationExit-Less, Isolated, and Shared Access for Virtual Machines

Kenichi Yasukata
IIJ Research Laboratory

Japan

Hajime Tazaki
IIJ Research Laboratory

Japan

Pierre-Louis Aublin
IIJ Research Laboratory

Japan

ABSTRACT
This paper explores Exit-Less, Isolated, and Shared Access (ELISA),
a novel in-memory object sharing scheme for Virtual Machines
(VMs). ELISA has the isolation advantage over the shared memory
directly exposed to guest VMswhile its overhead is smaller than that
of host-interposition relying on the costly exit from the VM context.
In a nutshell, ELISA isolates shared in-memory objects by Extended
Page Table (EPT) separation, and a guest VM accesses them by
switching the EPT context using VMFUNC, a low-overhead CPU
instruction of Intel CPUs. Our experiment shows that the overhead
of ELISA is 3.5 times smaller than that of VMCALL-oriented host-
interposition. We demonstrate the bene�ts of ELISA through two
use cases; by replacing VMCALL with ELISA, a VM networking
system and an in-memory key-value store exhibit 163% and 64%
higher performance respectively.

CCS CONCEPTS
• Software and its engineering! Virtual machines.

KEYWORDS
Virtualization, Isolation, Shared Memory

ACM Reference Format:
Kenichi Yasukata, Hajime Tazaki, and Pierre-Louis Aublin. 2023. Exit-Less,
Isolated, and Shared Access for Virtual Machines. In Proceedings of the 28th
ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 3 (ASPLOS ’23), March 25–29,
2023, Vancouver, BC, Canada. ACM, New York, NY, USA, 14 pages. https:
//doi.org/10.1145/3582016.3582042

1 INTRODUCTION
Virtual Machines (VMs) are one of the most popular computation
environments. Particularly, they have been the foundation of cloud
computing infrastructures. One of the primary reasons why VMs
are widely used is their isolation property: a guest VM can access
only the resources granted by the host. In particular, memory iso-
lation is essential to guarantee that a guest VM will not access
in-memory objects (e.g., the code to be executed, the data manipu-
lated by the code, and the memory region used for Direct Memory
Access (DMA) of a physical I/O device) dedicated to the host or
other guest VMs. Nevertheless, sharing the same in-memory ob-
ject can be bene�cial, for example, to share a physical I/O device
between di�erent guest VMs.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9918-0/23/03.
https://doi.org/10.1145/3582016.3582042

Table 1: Properties of the in-memory object sharing schemes.

Description Shared access Isolation overhead
Direct-mapping No isolation None
Host-interposition Isolated High
ELISA (this work) Isolated Low

Problem statement. There are two existing in-memory object
sharing schemes for VMs: direct-mapping which directly maps the
same memory region to di�erent guest VMs, and host-interposition
where the host intermediates access to a shared in-memory object.
Both have pros and cons as shown in Table 1. Host-interposition of-
fers isolation but incurs a high overhead due to the exit from the VM
context [1]. In contrast, direct-mapping o�ers high performance
but does not provide isolation. Despite its negative performance
impact, the host-interposition model is popularly applied in virtu-
alized environments where guest VMs are untrusted and need to
be isolated from each other and from the host. The problem, this
work addresses, is the lack of an in-memory object sharing scheme
that provides both isolation and low overhead.

Motivating examples. This problem is serious in various virtu-
alization scenarios.

• Virtual I/O. For example, virtual I/O systems typically adopt
the host-interposition model and hide the DMA regions of
physical I/O devices in the trusted host context so that un-
trusted guest VMs cannot directly manipulate the physical
I/O devices. However, in the recent trend of hardware inno-
vation, a drastic improvement in CPU speed is not expected
while physical I/O devices are continuously getting faster.
Consequently, the cost of the exit from the VM context,
which appears as a CPU overhead (§ 6.1), makes it more dif-
�cult for virtual I/O systems to fully utilize the potential of
high-speed physical I/O devices; we observe that, in a highly-
optimized VM networking system called HyperNF [44], the
overhead of exiting from the VM context causes a 49% per-
formance reduction, compared to the direct-mapping model,
for I/O involving a physical NIC (§ 7.1).

• Cross-VM data sharing. Another example is data sharing
across guest VMs running on the same physical machine;
the shared memory allows multiple guest VMs, on the same
physical machine, to share the data at a substantially lower
overhead compared to TCP/IP networking, and it can con-
tribute to the performance of in-memory storage systems
such as Tra�cDB [6]. However, the shared memory, based
on the direct-mapping model, negates the isolation bene�t of
VMs, and it o�ers a signi�cant chance for an adversary, who
has successfully compromised one of the guest VMs, to attack
the other guest VMs that have the access to the same shared
memory region. The host-interposition model resolves this

😁😭
😁 😭

ELISA
(Exit-Less, Isolated, and Shared Access)

😁 😀



VM
FU

N
C

cRde

cRde

defaXlW EPT cRQWe[W

gaWe EPT cRQWe[W

gXeVW VM

VXb EPT cRQWe[W

cRde

ORaG
PaS

RbjecW

RbjecW

accHVV

VM
FU

N
C

cRde

cRde

gXeVW VM

RbjecW

PaS

ORaG

accHVV

maQageU VM

This Work

• Isolation
• Extended Page Table (EPT) separation

• Low overhead
• Using EPT Pointer (EPTP) switching feature

of VMFUNC, a lightweight CPU instruction

Exit-Less, Isolated, and Shared Access for Virtual Machines
Kenichi Yasukata

IIJ Research Laboratory
Japan

Hajime Tazaki
IIJ Research Laboratory

Japan

Pierre-Louis Aublin
IIJ Research Laboratory

Japan

ABSTRACT
This paper explores Exit-Less, Isolated, and Shared Access (ELISA),
a novel in-memory object sharing scheme for Virtual Machines
(VMs). ELISA has the isolation advantage over the shared memory
directly exposed to guest VMswhile its overhead is smaller than that
of host-interposition relying on the costly exit from the VM context.
In a nutshell, ELISA isolates shared in-memory objects by Extended
Page Table (EPT) separation, and a guest VM accesses them by
switching the EPT context using VMFUNC, a low-overhead CPU
instruction of Intel CPUs. Our experiment shows that the overhead
of ELISA is 3.5 times smaller than that of VMCALL-oriented host-
interposition. We demonstrate the bene�ts of ELISA through two
use cases; by replacing VMCALL with ELISA, a VM networking
system and an in-memory key-value store exhibit 163% and 64%
higher performance respectively.

CCS CONCEPTS
• Software and its engineering! Virtual machines.

KEYWORDS
Virtualization, Isolation, Shared Memory

ACM Reference Format:
Kenichi Yasukata, Hajime Tazaki, and Pierre-Louis Aublin. 2023. Exit-Less,
Isolated, and Shared Access for Virtual Machines. In Proceedings of the 28th
ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 3 (ASPLOS ’23), March 25–29,
2023, Vancouver, BC, Canada. ACM, New York, NY, USA, 14 pages. https:
//doi.org/10.1145/3582016.3582042

1 INTRODUCTION
Virtual Machines (VMs) are one of the most popular computation
environments. Particularly, they have been the foundation of cloud
computing infrastructures. One of the primary reasons why VMs
are widely used is their isolation property: a guest VM can access
only the resources granted by the host. In particular, memory iso-
lation is essential to guarantee that a guest VM will not access
in-memory objects (e.g., the code to be executed, the data manipu-
lated by the code, and the memory region used for Direct Memory
Access (DMA) of a physical I/O device) dedicated to the host or
other guest VMs. Nevertheless, sharing the same in-memory ob-
ject can be bene�cial, for example, to share a physical I/O device
between di�erent guest VMs.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9918-0/23/03.
https://doi.org/10.1145/3582016.3582042

Table 1: Properties of the in-memory object sharing schemes.

Description Shared access Isolation overhead
Direct-mapping No isolation None
Host-interposition Isolated High
ELISA (this work) Isolated Low

Problem statement. There are two existing in-memory object
sharing schemes for VMs: direct-mapping which directly maps the
same memory region to di�erent guest VMs, and host-interposition
where the host intermediates access to a shared in-memory object.
Both have pros and cons as shown in Table 1. Host-interposition of-
fers isolation but incurs a high overhead due to the exit from the VM
context [1]. In contrast, direct-mapping o�ers high performance
but does not provide isolation. Despite its negative performance
impact, the host-interposition model is popularly applied in virtu-
alized environments where guest VMs are untrusted and need to
be isolated from each other and from the host. The problem, this
work addresses, is the lack of an in-memory object sharing scheme
that provides both isolation and low overhead.

Motivating examples. This problem is serious in various virtu-
alization scenarios.

• Virtual I/O. For example, virtual I/O systems typically adopt
the host-interposition model and hide the DMA regions of
physical I/O devices in the trusted host context so that un-
trusted guest VMs cannot directly manipulate the physical
I/O devices. However, in the recent trend of hardware inno-
vation, a drastic improvement in CPU speed is not expected
while physical I/O devices are continuously getting faster.
Consequently, the cost of the exit from the VM context,
which appears as a CPU overhead (§ 6.1), makes it more dif-
�cult for virtual I/O systems to fully utilize the potential of
high-speed physical I/O devices; we observe that, in a highly-
optimized VM networking system called HyperNF [44], the
overhead of exiting from the VM context causes a 49% per-
formance reduction, compared to the direct-mapping model,
for I/O involving a physical NIC (§ 7.1).

• Cross-VM data sharing. Another example is data sharing
across guest VMs running on the same physical machine;
the shared memory allows multiple guest VMs, on the same
physical machine, to share the data at a substantially lower
overhead compared to TCP/IP networking, and it can con-
tribute to the performance of in-memory storage systems
such as Tra�cDB [6]. However, the shared memory, based
on the direct-mapping model, negates the isolation bene�t of
VMs, and it o�ers a signi�cant chance for an adversary, who
has successfully compromised one of the guest VMs, to attack
the other guest VMs that have the access to the same shared
memory region. The host-interposition model resolves this

😁😭
😁 😭

ELISA
(Exit-Less, Isolated, and Shared Access)

😁 😀



VM
FU

N
C

cRde

cRde

defaXlW EPT cRQWe[W

gaWe EPT cRQWe[W

gXeVW VM

VXb EPT cRQWe[W

cRde

ORaG
PaS

RbjecW

RbjecW

accHVV

VM
FU

N
C

cRde

cRde

gXeVW VM

RbjecW

PaS

ORaG

accHVV

maQageU VM

This Work

• Isolation
• Extended Page Table (EPT) separation

• Low overhead
• Using EPT Pointer (EPTP) switching feature

of VMFUNC, a lightweight CPU instruction

Exit-Less, Isolated, and Shared Access for Virtual Machines
Kenichi Yasukata

IIJ Research Laboratory
Japan

Hajime Tazaki
IIJ Research Laboratory

Japan

Pierre-Louis Aublin
IIJ Research Laboratory

Japan

ABSTRACT
This paper explores Exit-Less, Isolated, and Shared Access (ELISA),
a novel in-memory object sharing scheme for Virtual Machines
(VMs). ELISA has the isolation advantage over the shared memory
directly exposed to guest VMswhile its overhead is smaller than that
of host-interposition relying on the costly exit from the VM context.
In a nutshell, ELISA isolates shared in-memory objects by Extended
Page Table (EPT) separation, and a guest VM accesses them by
switching the EPT context using VMFUNC, a low-overhead CPU
instruction of Intel CPUs. Our experiment shows that the overhead
of ELISA is 3.5 times smaller than that of VMCALL-oriented host-
interposition. We demonstrate the bene�ts of ELISA through two
use cases; by replacing VMCALL with ELISA, a VM networking
system and an in-memory key-value store exhibit 163% and 64%
higher performance respectively.

CCS CONCEPTS
• Software and its engineering! Virtual machines.

KEYWORDS
Virtualization, Isolation, Shared Memory

ACM Reference Format:
Kenichi Yasukata, Hajime Tazaki, and Pierre-Louis Aublin. 2023. Exit-Less,
Isolated, and Shared Access for Virtual Machines. In Proceedings of the 28th
ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 3 (ASPLOS ’23), March 25–29,
2023, Vancouver, BC, Canada. ACM, New York, NY, USA, 14 pages. https:
//doi.org/10.1145/3582016.3582042

1 INTRODUCTION
Virtual Machines (VMs) are one of the most popular computation
environments. Particularly, they have been the foundation of cloud
computing infrastructures. One of the primary reasons why VMs
are widely used is their isolation property: a guest VM can access
only the resources granted by the host. In particular, memory iso-
lation is essential to guarantee that a guest VM will not access
in-memory objects (e.g., the code to be executed, the data manipu-
lated by the code, and the memory region used for Direct Memory
Access (DMA) of a physical I/O device) dedicated to the host or
other guest VMs. Nevertheless, sharing the same in-memory ob-
ject can be bene�cial, for example, to share a physical I/O device
between di�erent guest VMs.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9918-0/23/03.
https://doi.org/10.1145/3582016.3582042

Table 1: Properties of the in-memory object sharing schemes.

Description Shared access Isolation overhead
Direct-mapping No isolation None
Host-interposition Isolated High
ELISA (this work) Isolated Low

Problem statement. There are two existing in-memory object
sharing schemes for VMs: direct-mapping which directly maps the
same memory region to di�erent guest VMs, and host-interposition
where the host intermediates access to a shared in-memory object.
Both have pros and cons as shown in Table 1. Host-interposition of-
fers isolation but incurs a high overhead due to the exit from the VM
context [1]. In contrast, direct-mapping o�ers high performance
but does not provide isolation. Despite its negative performance
impact, the host-interposition model is popularly applied in virtu-
alized environments where guest VMs are untrusted and need to
be isolated from each other and from the host. The problem, this
work addresses, is the lack of an in-memory object sharing scheme
that provides both isolation and low overhead.

Motivating examples. This problem is serious in various virtu-
alization scenarios.

• Virtual I/O. For example, virtual I/O systems typically adopt
the host-interposition model and hide the DMA regions of
physical I/O devices in the trusted host context so that un-
trusted guest VMs cannot directly manipulate the physical
I/O devices. However, in the recent trend of hardware inno-
vation, a drastic improvement in CPU speed is not expected
while physical I/O devices are continuously getting faster.
Consequently, the cost of the exit from the VM context,
which appears as a CPU overhead (§ 6.1), makes it more dif-
�cult for virtual I/O systems to fully utilize the potential of
high-speed physical I/O devices; we observe that, in a highly-
optimized VM networking system called HyperNF [44], the
overhead of exiting from the VM context causes a 49% per-
formance reduction, compared to the direct-mapping model,
for I/O involving a physical NIC (§ 7.1).

• Cross-VM data sharing. Another example is data sharing
across guest VMs running on the same physical machine;
the shared memory allows multiple guest VMs, on the same
physical machine, to share the data at a substantially lower
overhead compared to TCP/IP networking, and it can con-
tribute to the performance of in-memory storage systems
such as Tra�cDB [6]. However, the shared memory, based
on the direct-mapping model, negates the isolation bene�t of
VMs, and it o�ers a signi�cant chance for an adversary, who
has successfully compromised one of the guest VMs, to attack
the other guest VMs that have the access to the same shared
memory region. The host-interposition model resolves this

😁😭
😁 😭

ELISA
(Exit-Less, Isolated, and Shared Access)

😁 😀



Results

• The context switch overhead of ELISA is 3.5 times lighter than 
that of VMCALL-oriented host-interposition

Description Time [ns]
ELISA 196
VMCALL 699

Context Round-trip Time



Results

• Replacement from VMCALL to ELISA speeds up applications

 0

 2

 4

 6

 8

 10

 12

 14

1 2 3 4 5 6 7 8

T
h

ro
u

g
h

p
u

t 
[M

o
p

s/
se

c]

Number of VMs

ivshmem
VMCALL
ELISA

In-memory Key-Value Store

GET

 0

 2

 4

 6

 8

1 2 3 4 5 6 7 8

T
h

ro
u

g
h

p
u

t 
[M

o
p

s/
se

c]

Number of VMs

PUT

 0

 2

 4

 6

 8

 10

 12

 14

 16

64 128 256 512 1024 1472

T
h

ro
u

g
h

p
u

t 
[M

p
p

s]

Packet Size [byte]

ivshmem
VMCALL
ELISA
vhost-net
SR-IOV

RX over NIC

 0

 2

 4

 6

 8

 10

 12

 14

 16

64 128 256 512 1024 1472

T
h

ro
u

g
h

p
u

t 
[M

p
p

s]

Packet Size [byte]

TX over NIC

VM Networking System

 0

 2

 4

 6

 8

 10

 12

 14

 16

64 128 256 512 1024 1472

T
h

ro
u

g
h

p
u

t 
[M

p
p

s]

Packet Size [byte]

VM to VM

 0

 50

 100

 150

 200

 250

 300

 0  50  100  150  200  250  300  350  400  450  500

9
9

th
 %

ile
 L

a
te

n
cy

 [
u

s]

Throughput [K requests/sec]

memcached
 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0  50  100  150  200  250

9
9
th

 %
ile

 L
a
te

n
cy

 [
u
s]

Throughput [K requests/sec]

ivshmem
VMCALL
ELISA
vhost-net
SR-IOV

163% higher throughput54% higher throughput

49% higher throughput 44% lower 99th %ile latency

64% higher throughput

39% higher throughput



More Information

• Project web page : https://github.com/yasukata/ELISA
• Paper
• Slides
• Source code
• Commentary

The text-to-speech system, speaking from the manuscript in this video, is Amazon Polly

https://github.com/yasukata/ELISA

