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• VMs are one of the most popular computing environments

• Memory isolation is an important feature of VMs

• But, VMs sometimes need to access the same memory region

• For example, to share DMA-capable I/O devices
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ABSTRACT
This paper explores Exit-Less, Isolated, and Shared Access (ELISA),
a novel in-memory object sharing scheme for Virtual Machines
(VMs). ELISA has the isolation advantage over the shared memory
directly exposed to guest VMswhile its overhead is smaller than that
of host-interposition relying on the costly exit from the VM context.
In a nutshell, ELISA isolates shared in-memory objects by Extended
Page Table (EPT) separation, and a guest VM accesses them by
switching the EPT context using VMFUNC, a low-overhead CPU
instruction of Intel CPUs. Our experiment shows that the overhead
of ELISA is 3.5 times smaller than that of VMCALL-oriented host-
interposition. We demonstrate the bene�ts of ELISA through two
use cases; by replacing VMCALL with ELISA, a VM networking
system and an in-memory key-value store exhibit 163% and 64%
higher performance respectively.
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1 INTRODUCTION
Virtual Machines (VMs) are one of the most popular computation
environments. Particularly, they have been the foundation of cloud
computing infrastructures. One of the primary reasons why VMs
are widely used is their isolation property: a guest VM can access
only the resources granted by the host. In particular, memory iso-
lation is essential to guarantee that a guest VM will not access
in-memory objects (e.g., the code to be executed, the data manipu-
lated by the code, and the memory region used for Direct Memory
Access (DMA) of a physical I/O device) dedicated to the host or
other guest VMs. Nevertheless, sharing the same in-memory ob-
ject can be bene�cial, for example, to share a physical I/O device
between di�erent guest VMs.
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Table 1: Properties of the in-memory object sharing schemes.

Description Shared access Isolation overhead
Direct-mapping No isolation None
Host-interposition Isolated High
ELISA (this work) Isolated Low

Problem statement. There are two existing in-memory object
sharing schemes for VMs: direct-mapping which directly maps the
same memory region to di�erent guest VMs, and host-interposition
where the host intermediates access to a shared in-memory object.
Both have pros and cons as shown in Table 1. Host-interposition of-
fers isolation but incurs a high overhead due to the exit from the VM
context [1]. In contrast, direct-mapping o�ers high performance
but does not provide isolation. Despite its negative performance
impact, the host-interposition model is popularly applied in virtu-
alized environments where guest VMs are untrusted and need to
be isolated from each other and from the host. The problem, this
work addresses, is the lack of an in-memory object sharing scheme
that provides both isolation and low overhead.

Motivating examples. This problem is serious in various virtu-
alization scenarios.

• Virtual I/O. For example, virtual I/O systems typically adopt
the host-interposition model and hide the DMA regions of
physical I/O devices in the trusted host context so that un-
trusted guest VMs cannot directly manipulate the physical
I/O devices. However, in the recent trend of hardware inno-
vation, a drastic improvement in CPU speed is not expected
while physical I/O devices are continuously getting faster.
Consequently, the cost of the exit from the VM context,
which appears as a CPU overhead (§ 6.1), makes it more dif-
�cult for virtual I/O systems to fully utilize the potential of
high-speed physical I/O devices; we observe that, in a highly-
optimized VM networking system called HyperNF [44], the
overhead of exiting from the VM context causes a 49% per-
formance reduction, compared to the direct-mapping model,
for I/O involving a physical NIC (§ 7.1).

• Cross-VM data sharing. Another example is data sharing
across guest VMs running on the same physical machine;
the shared memory allows multiple guest VMs, on the same
physical machine, to share the data at a substantially lower
overhead compared to TCP/IP networking, and it can con-
tribute to the performance of in-memory storage systems
such as Tra�cDB [6]. However, the shared memory, based
on the direct-mapping model, negates the isolation bene�t of
VMs, and it o�ers a signi�cant chance for an adversary, who
has successfully compromised one of the guest VMs, to attack
the other guest VMs that have the access to the same shared
memory region. The host-interposition model resolves this
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1 INTRODUCTION
Virtual Machines (VMs) are one of the most popular computation
environments. Particularly, they have been the foundation of cloud
computing infrastructures. One of the primary reasons why VMs
are widely used is their isolation property: a guest VM can access
only the resources granted by the host. In particular, memory iso-
lation is essential to guarantee that a guest VM will not access
in-memory objects (e.g., the code to be executed, the data manipu-
lated by the code, and the memory region used for Direct Memory
Access (DMA) of a physical I/O device) dedicated to the host or
other guest VMs. Nevertheless, sharing the same in-memory ob-
ject can be bene�cial, for example, to share a physical I/O device
between di�erent guest VMs.
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Table 1: Properties of the in-memory object sharing schemes.

Description Shared access Isolation overhead
Direct-mapping No isolation None
Host-interposition Isolated High
ELISA (this work) Isolated Low

Problem statement. There are two existing in-memory object
sharing schemes for VMs: direct-mapping which directly maps the
same memory region to di�erent guest VMs, and host-interposition
where the host intermediates access to a shared in-memory object.
Both have pros and cons as shown in Table 1. Host-interposition of-
fers isolation but incurs a high overhead due to the exit from the VM
context [1]. In contrast, direct-mapping o�ers high performance
but does not provide isolation. Despite its negative performance
impact, the host-interposition model is popularly applied in virtu-
alized environments where guest VMs are untrusted and need to
be isolated from each other and from the host. The problem, this
work addresses, is the lack of an in-memory object sharing scheme
that provides both isolation and low overhead.

Motivating examples. This problem is serious in various virtu-
alization scenarios.

• Virtual I/O. For example, virtual I/O systems typically adopt
the host-interposition model and hide the DMA regions of
physical I/O devices in the trusted host context so that un-
trusted guest VMs cannot directly manipulate the physical
I/O devices. However, in the recent trend of hardware inno-
vation, a drastic improvement in CPU speed is not expected
while physical I/O devices are continuously getting faster.
Consequently, the cost of the exit from the VM context,
which appears as a CPU overhead (§ 6.1), makes it more dif-
�cult for virtual I/O systems to fully utilize the potential of
high-speed physical I/O devices; we observe that, in a highly-
optimized VM networking system called HyperNF [44], the
overhead of exiting from the VM context causes a 49% per-
formance reduction, compared to the direct-mapping model,
for I/O involving a physical NIC (§ 7.1).

• Cross-VM data sharing. Another example is data sharing
across guest VMs running on the same physical machine;
the shared memory allows multiple guest VMs, on the same
physical machine, to share the data at a substantially lower
overhead compared to TCP/IP networking, and it can con-
tribute to the performance of in-memory storage systems
such as Tra�cDB [6]. However, the shared memory, based
on the direct-mapping model, negates the isolation bene�t of
VMs, and it o�ers a signi�cant chance for an adversary, who
has successfully compromised one of the guest VMs, to attack
the other guest VMs that have the access to the same shared
memory region. The host-interposition model resolves this
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of host-interposition relying on the costly exit from the VM context.
In a nutshell, ELISA isolates shared in-memory objects by Extended
Page Table (EPT) separation, and a guest VM accesses them by
switching the EPT context using VMFUNC, a low-overhead CPU
instruction of Intel CPUs. Our experiment shows that the overhead
of ELISA is 3.5 times smaller than that of VMCALL-oriented host-
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1 INTRODUCTION
Virtual Machines (VMs) are one of the most popular computation
environments. Particularly, they have been the foundation of cloud
computing infrastructures. One of the primary reasons why VMs
are widely used is their isolation property: a guest VM can access
only the resources granted by the host. In particular, memory iso-
lation is essential to guarantee that a guest VM will not access
in-memory objects (e.g., the code to be executed, the data manipu-
lated by the code, and the memory region used for Direct Memory
Access (DMA) of a physical I/O device) dedicated to the host or
other guest VMs. Nevertheless, sharing the same in-memory ob-
ject can be bene�cial, for example, to share a physical I/O device
between di�erent guest VMs.
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Table 1: Properties of the in-memory object sharing schemes.

Description Shared access Isolation overhead
Direct-mapping No isolation None
Host-interposition Isolated High
ELISA (this work) Isolated Low

Problem statement. There are two existing in-memory object
sharing schemes for VMs: direct-mapping which directly maps the
same memory region to di�erent guest VMs, and host-interposition
where the host intermediates access to a shared in-memory object.
Both have pros and cons as shown in Table 1. Host-interposition of-
fers isolation but incurs a high overhead due to the exit from the VM
context [1]. In contrast, direct-mapping o�ers high performance
but does not provide isolation. Despite its negative performance
impact, the host-interposition model is popularly applied in virtu-
alized environments where guest VMs are untrusted and need to
be isolated from each other and from the host. The problem, this
work addresses, is the lack of an in-memory object sharing scheme
that provides both isolation and low overhead.

Motivating examples. This problem is serious in various virtu-
alization scenarios.

• Virtual I/O. For example, virtual I/O systems typically adopt
the host-interposition model and hide the DMA regions of
physical I/O devices in the trusted host context so that un-
trusted guest VMs cannot directly manipulate the physical
I/O devices. However, in the recent trend of hardware inno-
vation, a drastic improvement in CPU speed is not expected
while physical I/O devices are continuously getting faster.
Consequently, the cost of the exit from the VM context,
which appears as a CPU overhead (§ 6.1), makes it more dif-
�cult for virtual I/O systems to fully utilize the potential of
high-speed physical I/O devices; we observe that, in a highly-
optimized VM networking system called HyperNF [44], the
overhead of exiting from the VM context causes a 49% per-
formance reduction, compared to the direct-mapping model,
for I/O involving a physical NIC (§ 7.1).

• Cross-VM data sharing. Another example is data sharing
across guest VMs running on the same physical machine;
the shared memory allows multiple guest VMs, on the same
physical machine, to share the data at a substantially lower
overhead compared to TCP/IP networking, and it can con-
tribute to the performance of in-memory storage systems
such as Tra�cDB [6]. However, the shared memory, based
on the direct-mapping model, negates the isolation bene�t of
VMs, and it o�ers a signi�cant chance for an adversary, who
has successfully compromised one of the guest VMs, to attack
the other guest VMs that have the access to the same shared
memory region. The host-interposition model resolves this
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Page Table (EPT) separation, and a guest VM accesses them by
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instruction of Intel CPUs. Our experiment shows that the overhead
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1 INTRODUCTION
Virtual Machines (VMs) are one of the most popular computation
environments. Particularly, they have been the foundation of cloud
computing infrastructures. One of the primary reasons why VMs
are widely used is their isolation property: a guest VM can access
only the resources granted by the host. In particular, memory iso-
lation is essential to guarantee that a guest VM will not access
in-memory objects (e.g., the code to be executed, the data manipu-
lated by the code, and the memory region used for Direct Memory
Access (DMA) of a physical I/O device) dedicated to the host or
other guest VMs. Nevertheless, sharing the same in-memory ob-
ject can be bene�cial, for example, to share a physical I/O device
between di�erent guest VMs.
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Table 1: Properties of the in-memory object sharing schemes.

Description Shared access Isolation overhead
Direct-mapping No isolation None
Host-interposition Isolated High
ELISA (this work) Isolated Low

Problem statement. There are two existing in-memory object
sharing schemes for VMs: direct-mapping which directly maps the
same memory region to di�erent guest VMs, and host-interposition
where the host intermediates access to a shared in-memory object.
Both have pros and cons as shown in Table 1. Host-interposition of-
fers isolation but incurs a high overhead due to the exit from the VM
context [1]. In contrast, direct-mapping o�ers high performance
but does not provide isolation. Despite its negative performance
impact, the host-interposition model is popularly applied in virtu-
alized environments where guest VMs are untrusted and need to
be isolated from each other and from the host. The problem, this
work addresses, is the lack of an in-memory object sharing scheme
that provides both isolation and low overhead.

Motivating examples. This problem is serious in various virtu-
alization scenarios.

• Virtual I/O. For example, virtual I/O systems typically adopt
the host-interposition model and hide the DMA regions of
physical I/O devices in the trusted host context so that un-
trusted guest VMs cannot directly manipulate the physical
I/O devices. However, in the recent trend of hardware inno-
vation, a drastic improvement in CPU speed is not expected
while physical I/O devices are continuously getting faster.
Consequently, the cost of the exit from the VM context,
which appears as a CPU overhead (§ 6.1), makes it more dif-
�cult for virtual I/O systems to fully utilize the potential of
high-speed physical I/O devices; we observe that, in a highly-
optimized VM networking system called HyperNF [44], the
overhead of exiting from the VM context causes a 49% per-
formance reduction, compared to the direct-mapping model,
for I/O involving a physical NIC (§ 7.1).

• Cross-VM data sharing. Another example is data sharing
across guest VMs running on the same physical machine;
the shared memory allows multiple guest VMs, on the same
physical machine, to share the data at a substantially lower
overhead compared to TCP/IP networking, and it can con-
tribute to the performance of in-memory storage systems
such as Tra�cDB [6]. However, the shared memory, based
on the direct-mapping model, negates the isolation bene�t of
VMs, and it o�ers a signi�cant chance for an adversary, who
has successfully compromised one of the guest VMs, to attack
the other guest VMs that have the access to the same shared
memory region. The host-interposition model resolves this
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instruction of Intel CPUs. Our experiment shows that the overhead
of ELISA is 3.5 times smaller than that of VMCALL-oriented host-
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1 INTRODUCTION
Virtual Machines (VMs) are one of the most popular computation
environments. Particularly, they have been the foundation of cloud
computing infrastructures. One of the primary reasons why VMs
are widely used is their isolation property: a guest VM can access
only the resources granted by the host. In particular, memory iso-
lation is essential to guarantee that a guest VM will not access
in-memory objects (e.g., the code to be executed, the data manipu-
lated by the code, and the memory region used for Direct Memory
Access (DMA) of a physical I/O device) dedicated to the host or
other guest VMs. Nevertheless, sharing the same in-memory ob-
ject can be bene�cial, for example, to share a physical I/O device
between di�erent guest VMs.
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Table 1: Properties of the in-memory object sharing schemes.

Description Shared access Isolation overhead
Direct-mapping No isolation None
Host-interposition Isolated High
ELISA (this work) Isolated Low

Problem statement. There are two existing in-memory object
sharing schemes for VMs: direct-mapping which directly maps the
same memory region to di�erent guest VMs, and host-interposition
where the host intermediates access to a shared in-memory object.
Both have pros and cons as shown in Table 1. Host-interposition of-
fers isolation but incurs a high overhead due to the exit from the VM
context [1]. In contrast, direct-mapping o�ers high performance
but does not provide isolation. Despite its negative performance
impact, the host-interposition model is popularly applied in virtu-
alized environments where guest VMs are untrusted and need to
be isolated from each other and from the host. The problem, this
work addresses, is the lack of an in-memory object sharing scheme
that provides both isolation and low overhead.

Motivating examples. This problem is serious in various virtu-
alization scenarios.

• Virtual I/O. For example, virtual I/O systems typically adopt
the host-interposition model and hide the DMA regions of
physical I/O devices in the trusted host context so that un-
trusted guest VMs cannot directly manipulate the physical
I/O devices. However, in the recent trend of hardware inno-
vation, a drastic improvement in CPU speed is not expected
while physical I/O devices are continuously getting faster.
Consequently, the cost of the exit from the VM context,
which appears as a CPU overhead (§ 6.1), makes it more dif-
�cult for virtual I/O systems to fully utilize the potential of
high-speed physical I/O devices; we observe that, in a highly-
optimized VM networking system called HyperNF [44], the
overhead of exiting from the VM context causes a 49% per-
formance reduction, compared to the direct-mapping model,
for I/O involving a physical NIC (§ 7.1).

• Cross-VM data sharing. Another example is data sharing
across guest VMs running on the same physical machine;
the shared memory allows multiple guest VMs, on the same
physical machine, to share the data at a substantially lower
overhead compared to TCP/IP networking, and it can con-
tribute to the performance of in-memory storage systems
such as Tra�cDB [6]. However, the shared memory, based
on the direct-mapping model, negates the isolation bene�t of
VMs, and it o�ers a signi�cant chance for an adversary, who
has successfully compromised one of the guest VMs, to attack
the other guest VMs that have the access to the same shared
memory region. The host-interposition model resolves this
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ABSTRACT
This paper explores Exit-Less, Isolated, and Shared Access (ELISA),
a novel in-memory object sharing scheme for Virtual Machines
(VMs). ELISA has the isolation advantage over the shared memory
directly exposed to guest VMswhile its overhead is smaller than that
of host-interposition relying on the costly exit from the VM context.
In a nutshell, ELISA isolates shared in-memory objects by Extended
Page Table (EPT) separation, and a guest VM accesses them by
switching the EPT context using VMFUNC, a low-overhead CPU
instruction of Intel CPUs. Our experiment shows that the overhead
of ELISA is 3.5 times smaller than that of VMCALL-oriented host-
interposition. We demonstrate the bene�ts of ELISA through two
use cases; by replacing VMCALL with ELISA, a VM networking
system and an in-memory key-value store exhibit 163% and 64%
higher performance respectively.
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1 INTRODUCTION
Virtual Machines (VMs) are one of the most popular computation
environments. Particularly, they have been the foundation of cloud
computing infrastructures. One of the primary reasons why VMs
are widely used is their isolation property: a guest VM can access
only the resources granted by the host. In particular, memory iso-
lation is essential to guarantee that a guest VM will not access
in-memory objects (e.g., the code to be executed, the data manipu-
lated by the code, and the memory region used for Direct Memory
Access (DMA) of a physical I/O device) dedicated to the host or
other guest VMs. Nevertheless, sharing the same in-memory ob-
ject can be bene�cial, for example, to share a physical I/O device
between di�erent guest VMs.
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Table 1: Properties of the in-memory object sharing schemes.

Description Shared access Isolation overhead
Direct-mapping No isolation None
Host-interposition Isolated High
ELISA (this work) Isolated Low

Problem statement. There are two existing in-memory object
sharing schemes for VMs: direct-mapping which directly maps the
same memory region to di�erent guest VMs, and host-interposition
where the host intermediates access to a shared in-memory object.
Both have pros and cons as shown in Table 1. Host-interposition of-
fers isolation but incurs a high overhead due to the exit from the VM
context [1]. In contrast, direct-mapping o�ers high performance
but does not provide isolation. Despite its negative performance
impact, the host-interposition model is popularly applied in virtu-
alized environments where guest VMs are untrusted and need to
be isolated from each other and from the host. The problem, this
work addresses, is the lack of an in-memory object sharing scheme
that provides both isolation and low overhead.

Motivating examples. This problem is serious in various virtu-
alization scenarios.

• Virtual I/O. For example, virtual I/O systems typically adopt
the host-interposition model and hide the DMA regions of
physical I/O devices in the trusted host context so that un-
trusted guest VMs cannot directly manipulate the physical
I/O devices. However, in the recent trend of hardware inno-
vation, a drastic improvement in CPU speed is not expected
while physical I/O devices are continuously getting faster.
Consequently, the cost of the exit from the VM context,
which appears as a CPU overhead (§ 6.1), makes it more dif-
�cult for virtual I/O systems to fully utilize the potential of
high-speed physical I/O devices; we observe that, in a highly-
optimized VM networking system called HyperNF [44], the
overhead of exiting from the VM context causes a 49% per-
formance reduction, compared to the direct-mapping model,
for I/O involving a physical NIC (§ 7.1).

• Cross-VM data sharing. Another example is data sharing
across guest VMs running on the same physical machine;
the shared memory allows multiple guest VMs, on the same
physical machine, to share the data at a substantially lower
overhead compared to TCP/IP networking, and it can con-
tribute to the performance of in-memory storage systems
such as Tra�cDB [6]. However, the shared memory, based
on the direct-mapping model, negates the isolation bene�t of
VMs, and it o�ers a signi�cant chance for an adversary, who
has successfully compromised one of the guest VMs, to attack
the other guest VMs that have the access to the same shared
memory region. The host-interposition model resolves this
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ABSTRACT
This paper explores Exit-Less, Isolated, and Shared Access (ELISA),
a novel in-memory object sharing scheme for Virtual Machines
(VMs). ELISA has the isolation advantage over the shared memory
directly exposed to guest VMswhile its overhead is smaller than that
of host-interposition relying on the costly exit from the VM context.
In a nutshell, ELISA isolates shared in-memory objects by Extended
Page Table (EPT) separation, and a guest VM accesses them by
switching the EPT context using VMFUNC, a low-overhead CPU
instruction of Intel CPUs. Our experiment shows that the overhead
of ELISA is 3.5 times smaller than that of VMCALL-oriented host-
interposition. We demonstrate the bene�ts of ELISA through two
use cases; by replacing VMCALL with ELISA, a VM networking
system and an in-memory key-value store exhibit 163% and 64%
higher performance respectively.
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1 INTRODUCTION
Virtual Machines (VMs) are one of the most popular computation
environments. Particularly, they have been the foundation of cloud
computing infrastructures. One of the primary reasons why VMs
are widely used is their isolation property: a guest VM can access
only the resources granted by the host. In particular, memory iso-
lation is essential to guarantee that a guest VM will not access
in-memory objects (e.g., the code to be executed, the data manipu-
lated by the code, and the memory region used for Direct Memory
Access (DMA) of a physical I/O device) dedicated to the host or
other guest VMs. Nevertheless, sharing the same in-memory ob-
ject can be bene�cial, for example, to share a physical I/O device
between di�erent guest VMs.
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Table 1: Properties of the in-memory object sharing schemes.

Description Shared access Isolation overhead
Direct-mapping No isolation None
Host-interposition Isolated High
ELISA (this work) Isolated Low

Problem statement. There are two existing in-memory object
sharing schemes for VMs: direct-mapping which directly maps the
same memory region to di�erent guest VMs, and host-interposition
where the host intermediates access to a shared in-memory object.
Both have pros and cons as shown in Table 1. Host-interposition of-
fers isolation but incurs a high overhead due to the exit from the VM
context [1]. In contrast, direct-mapping o�ers high performance
but does not provide isolation. Despite its negative performance
impact, the host-interposition model is popularly applied in virtu-
alized environments where guest VMs are untrusted and need to
be isolated from each other and from the host. The problem, this
work addresses, is the lack of an in-memory object sharing scheme
that provides both isolation and low overhead.

Motivating examples. This problem is serious in various virtu-
alization scenarios.

• Virtual I/O. For example, virtual I/O systems typically adopt
the host-interposition model and hide the DMA regions of
physical I/O devices in the trusted host context so that un-
trusted guest VMs cannot directly manipulate the physical
I/O devices. However, in the recent trend of hardware inno-
vation, a drastic improvement in CPU speed is not expected
while physical I/O devices are continuously getting faster.
Consequently, the cost of the exit from the VM context,
which appears as a CPU overhead (§ 6.1), makes it more dif-
�cult for virtual I/O systems to fully utilize the potential of
high-speed physical I/O devices; we observe that, in a highly-
optimized VM networking system called HyperNF [44], the
overhead of exiting from the VM context causes a 49% per-
formance reduction, compared to the direct-mapping model,
for I/O involving a physical NIC (§ 7.1).

• Cross-VM data sharing. Another example is data sharing
across guest VMs running on the same physical machine;
the shared memory allows multiple guest VMs, on the same
physical machine, to share the data at a substantially lower
overhead compared to TCP/IP networking, and it can con-
tribute to the performance of in-memory storage systems
such as Tra�cDB [6]. However, the shared memory, based
on the direct-mapping model, negates the isolation bene�t of
VMs, and it o�ers a signi�cant chance for an adversary, who
has successfully compromised one of the guest VMs, to attack
the other guest VMs that have the access to the same shared
memory region. The host-interposition model resolves this
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ABSTRACT
This paper explores Exit-Less, Isolated, and Shared Access (ELISA),
a novel in-memory object sharing scheme for Virtual Machines
(VMs). ELISA has the isolation advantage over the shared memory
directly exposed to guest VMswhile its overhead is smaller than that
of host-interposition relying on the costly exit from the VM context.
In a nutshell, ELISA isolates shared in-memory objects by Extended
Page Table (EPT) separation, and a guest VM accesses them by
switching the EPT context using VMFUNC, a low-overhead CPU
instruction of Intel CPUs. Our experiment shows that the overhead
of ELISA is 3.5 times smaller than that of VMCALL-oriented host-
interposition. We demonstrate the bene�ts of ELISA through two
use cases; by replacing VMCALL with ELISA, a VM networking
system and an in-memory key-value store exhibit 163% and 64%
higher performance respectively.
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1 INTRODUCTION
Virtual Machines (VMs) are one of the most popular computation
environments. Particularly, they have been the foundation of cloud
computing infrastructures. One of the primary reasons why VMs
are widely used is their isolation property: a guest VM can access
only the resources granted by the host. In particular, memory iso-
lation is essential to guarantee that a guest VM will not access
in-memory objects (e.g., the code to be executed, the data manipu-
lated by the code, and the memory region used for Direct Memory
Access (DMA) of a physical I/O device) dedicated to the host or
other guest VMs. Nevertheless, sharing the same in-memory ob-
ject can be bene�cial, for example, to share a physical I/O device
between di�erent guest VMs.
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Table 1: Properties of the in-memory object sharing schemes.

Description Shared access Isolation overhead
Direct-mapping No isolation None
Host-interposition Isolated High
ELISA (this work) Isolated Low

Problem statement. There are two existing in-memory object
sharing schemes for VMs: direct-mapping which directly maps the
same memory region to di�erent guest VMs, and host-interposition
where the host intermediates access to a shared in-memory object.
Both have pros and cons as shown in Table 1. Host-interposition of-
fers isolation but incurs a high overhead due to the exit from the VM
context [1]. In contrast, direct-mapping o�ers high performance
but does not provide isolation. Despite its negative performance
impact, the host-interposition model is popularly applied in virtu-
alized environments where guest VMs are untrusted and need to
be isolated from each other and from the host. The problem, this
work addresses, is the lack of an in-memory object sharing scheme
that provides both isolation and low overhead.

Motivating examples. This problem is serious in various virtu-
alization scenarios.

• Virtual I/O. For example, virtual I/O systems typically adopt
the host-interposition model and hide the DMA regions of
physical I/O devices in the trusted host context so that un-
trusted guest VMs cannot directly manipulate the physical
I/O devices. However, in the recent trend of hardware inno-
vation, a drastic improvement in CPU speed is not expected
while physical I/O devices are continuously getting faster.
Consequently, the cost of the exit from the VM context,
which appears as a CPU overhead (§ 6.1), makes it more dif-
�cult for virtual I/O systems to fully utilize the potential of
high-speed physical I/O devices; we observe that, in a highly-
optimized VM networking system called HyperNF [44], the
overhead of exiting from the VM context causes a 49% per-
formance reduction, compared to the direct-mapping model,
for I/O involving a physical NIC (§ 7.1).

• Cross-VM data sharing. Another example is data sharing
across guest VMs running on the same physical machine;
the shared memory allows multiple guest VMs, on the same
physical machine, to share the data at a substantially lower
overhead compared to TCP/IP networking, and it can con-
tribute to the performance of in-memory storage systems
such as Tra�cDB [6]. However, the shared memory, based
on the direct-mapping model, negates the isolation bene�t of
VMs, and it o�ers a signi�cant chance for an adversary, who
has successfully compromised one of the guest VMs, to attack
the other guest VMs that have the access to the same shared
memory region. The host-interposition model resolves this
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ABSTRACT
This paper explores Exit-Less, Isolated, and Shared Access (ELISA),
a novel in-memory object sharing scheme for Virtual Machines
(VMs). ELISA has the isolation advantage over the shared memory
directly exposed to guest VMswhile its overhead is smaller than that
of host-interposition relying on the costly exit from the VM context.
In a nutshell, ELISA isolates shared in-memory objects by Extended
Page Table (EPT) separation, and a guest VM accesses them by
switching the EPT context using VMFUNC, a low-overhead CPU
instruction of Intel CPUs. Our experiment shows that the overhead
of ELISA is 3.5 times smaller than that of VMCALL-oriented host-
interposition. We demonstrate the bene�ts of ELISA through two
use cases; by replacing VMCALL with ELISA, a VM networking
system and an in-memory key-value store exhibit 163% and 64%
higher performance respectively.
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1 INTRODUCTION
Virtual Machines (VMs) are one of the most popular computation
environments. Particularly, they have been the foundation of cloud
computing infrastructures. One of the primary reasons why VMs
are widely used is their isolation property: a guest VM can access
only the resources granted by the host. In particular, memory iso-
lation is essential to guarantee that a guest VM will not access
in-memory objects (e.g., the code to be executed, the data manipu-
lated by the code, and the memory region used for Direct Memory
Access (DMA) of a physical I/O device) dedicated to the host or
other guest VMs. Nevertheless, sharing the same in-memory ob-
ject can be bene�cial, for example, to share a physical I/O device
between di�erent guest VMs.
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Table 1: Properties of the in-memory object sharing schemes.

Description Shared access Isolation overhead
Direct-mapping No isolation None
Host-interposition Isolated High
ELISA (this work) Isolated Low

Problem statement. There are two existing in-memory object
sharing schemes for VMs: direct-mapping which directly maps the
same memory region to di�erent guest VMs, and host-interposition
where the host intermediates access to a shared in-memory object.
Both have pros and cons as shown in Table 1. Host-interposition of-
fers isolation but incurs a high overhead due to the exit from the VM
context [1]. In contrast, direct-mapping o�ers high performance
but does not provide isolation. Despite its negative performance
impact, the host-interposition model is popularly applied in virtu-
alized environments where guest VMs are untrusted and need to
be isolated from each other and from the host. The problem, this
work addresses, is the lack of an in-memory object sharing scheme
that provides both isolation and low overhead.

Motivating examples. This problem is serious in various virtu-
alization scenarios.

• Virtual I/O. For example, virtual I/O systems typically adopt
the host-interposition model and hide the DMA regions of
physical I/O devices in the trusted host context so that un-
trusted guest VMs cannot directly manipulate the physical
I/O devices. However, in the recent trend of hardware inno-
vation, a drastic improvement in CPU speed is not expected
while physical I/O devices are continuously getting faster.
Consequently, the cost of the exit from the VM context,
which appears as a CPU overhead (§ 6.1), makes it more dif-
�cult for virtual I/O systems to fully utilize the potential of
high-speed physical I/O devices; we observe that, in a highly-
optimized VM networking system called HyperNF [44], the
overhead of exiting from the VM context causes a 49% per-
formance reduction, compared to the direct-mapping model,
for I/O involving a physical NIC (§ 7.1).

• Cross-VM data sharing. Another example is data sharing
across guest VMs running on the same physical machine;
the shared memory allows multiple guest VMs, on the same
physical machine, to share the data at a substantially lower
overhead compared to TCP/IP networking, and it can con-
tribute to the performance of in-memory storage systems
such as Tra�cDB [6]. However, the shared memory, based
on the direct-mapping model, negates the isolation bene�t of
VMs, and it o�ers a signi�cant chance for an adversary, who
has successfully compromised one of the guest VMs, to attack
the other guest VMs that have the access to the same shared
memory region. The host-interposition model resolves this
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ABSTRACT
This paper explores Exit-Less, Isolated, and Shared Access (ELISA),
a novel in-memory object sharing scheme for Virtual Machines
(VMs). ELISA has the isolation advantage over the shared memory
directly exposed to guest VMswhile its overhead is smaller than that
of host-interposition relying on the costly exit from the VM context.
In a nutshell, ELISA isolates shared in-memory objects by Extended
Page Table (EPT) separation, and a guest VM accesses them by
switching the EPT context using VMFUNC, a low-overhead CPU
instruction of Intel CPUs. Our experiment shows that the overhead
of ELISA is 3.5 times smaller than that of VMCALL-oriented host-
interposition. We demonstrate the bene�ts of ELISA through two
use cases; by replacing VMCALL with ELISA, a VM networking
system and an in-memory key-value store exhibit 163% and 64%
higher performance respectively.
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1 INTRODUCTION
Virtual Machines (VMs) are one of the most popular computation
environments. Particularly, they have been the foundation of cloud
computing infrastructures. One of the primary reasons why VMs
are widely used is their isolation property: a guest VM can access
only the resources granted by the host. In particular, memory iso-
lation is essential to guarantee that a guest VM will not access
in-memory objects (e.g., the code to be executed, the data manipu-
lated by the code, and the memory region used for Direct Memory
Access (DMA) of a physical I/O device) dedicated to the host or
other guest VMs. Nevertheless, sharing the same in-memory ob-
ject can be bene�cial, for example, to share a physical I/O device
between di�erent guest VMs.
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Table 1: Properties of the in-memory object sharing schemes.

Description Shared access Isolation overhead
Direct-mapping No isolation None
Host-interposition Isolated High
ELISA (this work) Isolated Low

Problem statement. There are two existing in-memory object
sharing schemes for VMs: direct-mapping which directly maps the
same memory region to di�erent guest VMs, and host-interposition
where the host intermediates access to a shared in-memory object.
Both have pros and cons as shown in Table 1. Host-interposition of-
fers isolation but incurs a high overhead due to the exit from the VM
context [1]. In contrast, direct-mapping o�ers high performance
but does not provide isolation. Despite its negative performance
impact, the host-interposition model is popularly applied in virtu-
alized environments where guest VMs are untrusted and need to
be isolated from each other and from the host. The problem, this
work addresses, is the lack of an in-memory object sharing scheme
that provides both isolation and low overhead.

Motivating examples. This problem is serious in various virtu-
alization scenarios.

• Virtual I/O. For example, virtual I/O systems typically adopt
the host-interposition model and hide the DMA regions of
physical I/O devices in the trusted host context so that un-
trusted guest VMs cannot directly manipulate the physical
I/O devices. However, in the recent trend of hardware inno-
vation, a drastic improvement in CPU speed is not expected
while physical I/O devices are continuously getting faster.
Consequently, the cost of the exit from the VM context,
which appears as a CPU overhead (§ 6.1), makes it more dif-
�cult for virtual I/O systems to fully utilize the potential of
high-speed physical I/O devices; we observe that, in a highly-
optimized VM networking system called HyperNF [44], the
overhead of exiting from the VM context causes a 49% per-
formance reduction, compared to the direct-mapping model,
for I/O involving a physical NIC (§ 7.1).

• Cross-VM data sharing. Another example is data sharing
across guest VMs running on the same physical machine;
the shared memory allows multiple guest VMs, on the same
physical machine, to share the data at a substantially lower
overhead compared to TCP/IP networking, and it can con-
tribute to the performance of in-memory storage systems
such as Tra�cDB [6]. However, the shared memory, based
on the direct-mapping model, negates the isolation bene�t of
VMs, and it o�ers a signi�cant chance for an adversary, who
has successfully compromised one of the guest VMs, to attack
the other guest VMs that have the access to the same shared
memory region. The host-interposition model resolves this
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ABSTRACT
This paper explores Exit-Less, Isolated, and Shared Access (ELISA),
a novel in-memory object sharing scheme for Virtual Machines
(VMs). ELISA has the isolation advantage over the shared memory
directly exposed to guest VMswhile its overhead is smaller than that
of host-interposition relying on the costly exit from the VM context.
In a nutshell, ELISA isolates shared in-memory objects by Extended
Page Table (EPT) separation, and a guest VM accesses them by
switching the EPT context using VMFUNC, a low-overhead CPU
instruction of Intel CPUs. Our experiment shows that the overhead
of ELISA is 3.5 times smaller than that of VMCALL-oriented host-
interposition. We demonstrate the bene�ts of ELISA through two
use cases; by replacing VMCALL with ELISA, a VM networking
system and an in-memory key-value store exhibit 163% and 64%
higher performance respectively.
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1 INTRODUCTION
Virtual Machines (VMs) are one of the most popular computation
environments. Particularly, they have been the foundation of cloud
computing infrastructures. One of the primary reasons why VMs
are widely used is their isolation property: a guest VM can access
only the resources granted by the host. In particular, memory iso-
lation is essential to guarantee that a guest VM will not access
in-memory objects (e.g., the code to be executed, the data manipu-
lated by the code, and the memory region used for Direct Memory
Access (DMA) of a physical I/O device) dedicated to the host or
other guest VMs. Nevertheless, sharing the same in-memory ob-
ject can be bene�cial, for example, to share a physical I/O device
between di�erent guest VMs.
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Table 1: Properties of the in-memory object sharing schemes.

Description Shared access Isolation overhead
Direct-mapping No isolation None
Host-interposition Isolated High
ELISA (this work) Isolated Low

Problem statement. There are two existing in-memory object
sharing schemes for VMs: direct-mapping which directly maps the
same memory region to di�erent guest VMs, and host-interposition
where the host intermediates access to a shared in-memory object.
Both have pros and cons as shown in Table 1. Host-interposition of-
fers isolation but incurs a high overhead due to the exit from the VM
context [1]. In contrast, direct-mapping o�ers high performance
but does not provide isolation. Despite its negative performance
impact, the host-interposition model is popularly applied in virtu-
alized environments where guest VMs are untrusted and need to
be isolated from each other and from the host. The problem, this
work addresses, is the lack of an in-memory object sharing scheme
that provides both isolation and low overhead.

Motivating examples. This problem is serious in various virtu-
alization scenarios.

• Virtual I/O. For example, virtual I/O systems typically adopt
the host-interposition model and hide the DMA regions of
physical I/O devices in the trusted host context so that un-
trusted guest VMs cannot directly manipulate the physical
I/O devices. However, in the recent trend of hardware inno-
vation, a drastic improvement in CPU speed is not expected
while physical I/O devices are continuously getting faster.
Consequently, the cost of the exit from the VM context,
which appears as a CPU overhead (§ 6.1), makes it more dif-
�cult for virtual I/O systems to fully utilize the potential of
high-speed physical I/O devices; we observe that, in a highly-
optimized VM networking system called HyperNF [44], the
overhead of exiting from the VM context causes a 49% per-
formance reduction, compared to the direct-mapping model,
for I/O involving a physical NIC (§ 7.1).

• Cross-VM data sharing. Another example is data sharing
across guest VMs running on the same physical machine;
the shared memory allows multiple guest VMs, on the same
physical machine, to share the data at a substantially lower
overhead compared to TCP/IP networking, and it can con-
tribute to the performance of in-memory storage systems
such as Tra�cDB [6]. However, the shared memory, based
on the direct-mapping model, negates the isolation bene�t of
VMs, and it o�ers a signi�cant chance for an adversary, who
has successfully compromised one of the guest VMs, to attack
the other guest VMs that have the access to the same shared
memory region. The host-interposition model resolves this
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1 INTRODUCTION
Virtual Machines (VMs) are one of the most popular computation
environments. Particularly, they have been the foundation of cloud
computing infrastructures. One of the primary reasons why VMs
are widely used is their isolation property: a guest VM can access
only the resources granted by the host. In particular, memory iso-
lation is essential to guarantee that a guest VM will not access
in-memory objects (e.g., the code to be executed, the data manipu-
lated by the code, and the memory region used for Direct Memory
Access (DMA) of a physical I/O device) dedicated to the host or
other guest VMs. Nevertheless, sharing the same in-memory ob-
ject can be bene�cial, for example, to share a physical I/O device
between di�erent guest VMs.
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Table 1: Properties of the in-memory object sharing schemes.

Description Shared access Isolation overhead
Direct-mapping No isolation None
Host-interposition Isolated High
ELISA (this work) Isolated Low

Problem statement. There are two existing in-memory object
sharing schemes for VMs: direct-mapping which directly maps the
same memory region to di�erent guest VMs, and host-interposition
where the host intermediates access to a shared in-memory object.
Both have pros and cons as shown in Table 1. Host-interposition of-
fers isolation but incurs a high overhead due to the exit from the VM
context [1]. In contrast, direct-mapping o�ers high performance
but does not provide isolation. Despite its negative performance
impact, the host-interposition model is popularly applied in virtu-
alized environments where guest VMs are untrusted and need to
be isolated from each other and from the host. The problem, this
work addresses, is the lack of an in-memory object sharing scheme
that provides both isolation and low overhead.

Motivating examples. This problem is serious in various virtu-
alization scenarios.

• Virtual I/O. For example, virtual I/O systems typically adopt
the host-interposition model and hide the DMA regions of
physical I/O devices in the trusted host context so that un-
trusted guest VMs cannot directly manipulate the physical
I/O devices. However, in the recent trend of hardware inno-
vation, a drastic improvement in CPU speed is not expected
while physical I/O devices are continuously getting faster.
Consequently, the cost of the exit from the VM context,
which appears as a CPU overhead (§ 6.1), makes it more dif-
�cult for virtual I/O systems to fully utilize the potential of
high-speed physical I/O devices; we observe that, in a highly-
optimized VM networking system called HyperNF [44], the
overhead of exiting from the VM context causes a 49% per-
formance reduction, compared to the direct-mapping model,
for I/O involving a physical NIC (§ 7.1).

• Cross-VM data sharing. Another example is data sharing
across guest VMs running on the same physical machine;
the shared memory allows multiple guest VMs, on the same
physical machine, to share the data at a substantially lower
overhead compared to TCP/IP networking, and it can con-
tribute to the performance of in-memory storage systems
such as Tra�cDB [6]. However, the shared memory, based
on the direct-mapping model, negates the isolation bene�t of
VMs, and it o�ers a signi�cant chance for an adversary, who
has successfully compromised one of the guest VMs, to attack
the other guest VMs that have the access to the same shared
memory region. The host-interposition model resolves this
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of ELISA is 3.5 times smaller than that of VMCALL-oriented host-
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1 INTRODUCTION
Virtual Machines (VMs) are one of the most popular computation
environments. Particularly, they have been the foundation of cloud
computing infrastructures. One of the primary reasons why VMs
are widely used is their isolation property: a guest VM can access
only the resources granted by the host. In particular, memory iso-
lation is essential to guarantee that a guest VM will not access
in-memory objects (e.g., the code to be executed, the data manipu-
lated by the code, and the memory region used for Direct Memory
Access (DMA) of a physical I/O device) dedicated to the host or
other guest VMs. Nevertheless, sharing the same in-memory ob-
ject can be bene�cial, for example, to share a physical I/O device
between di�erent guest VMs.
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Table 1: Properties of the in-memory object sharing schemes.

Description Shared access Isolation overhead
Direct-mapping No isolation None
Host-interposition Isolated High
ELISA (this work) Isolated Low

Problem statement. There are two existing in-memory object
sharing schemes for VMs: direct-mapping which directly maps the
same memory region to di�erent guest VMs, and host-interposition
where the host intermediates access to a shared in-memory object.
Both have pros and cons as shown in Table 1. Host-interposition of-
fers isolation but incurs a high overhead due to the exit from the VM
context [1]. In contrast, direct-mapping o�ers high performance
but does not provide isolation. Despite its negative performance
impact, the host-interposition model is popularly applied in virtu-
alized environments where guest VMs are untrusted and need to
be isolated from each other and from the host. The problem, this
work addresses, is the lack of an in-memory object sharing scheme
that provides both isolation and low overhead.

Motivating examples. This problem is serious in various virtu-
alization scenarios.

• Virtual I/O. For example, virtual I/O systems typically adopt
the host-interposition model and hide the DMA regions of
physical I/O devices in the trusted host context so that un-
trusted guest VMs cannot directly manipulate the physical
I/O devices. However, in the recent trend of hardware inno-
vation, a drastic improvement in CPU speed is not expected
while physical I/O devices are continuously getting faster.
Consequently, the cost of the exit from the VM context,
which appears as a CPU overhead (§ 6.1), makes it more dif-
�cult for virtual I/O systems to fully utilize the potential of
high-speed physical I/O devices; we observe that, in a highly-
optimized VM networking system called HyperNF [44], the
overhead of exiting from the VM context causes a 49% per-
formance reduction, compared to the direct-mapping model,
for I/O involving a physical NIC (§ 7.1).

• Cross-VM data sharing. Another example is data sharing
across guest VMs running on the same physical machine;
the shared memory allows multiple guest VMs, on the same
physical machine, to share the data at a substantially lower
overhead compared to TCP/IP networking, and it can con-
tribute to the performance of in-memory storage systems
such as Tra�cDB [6]. However, the shared memory, based
on the direct-mapping model, negates the isolation bene�t of
VMs, and it o�ers a signi�cant chance for an adversary, who
has successfully compromised one of the guest VMs, to attack
the other guest VMs that have the access to the same shared
memory region. The host-interposition model resolves this
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Results

• The context switch overhead of ELISA is 3.5 times lighter than 
that of VMCALL-oriented host-interposition

Description Time [ns]
ELISA 196
VMCALL 699

Context Round-trip Time



Results

• Replacement from VMCALL to ELISA speeds up applications
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